Normalized defining polynomial
\( x^{20} - 4 x^{19} + 14 x^{18} - 96 x^{17} + 435 x^{16} - 678 x^{15} + 11470 x^{14} + 7706 x^{13} + 187709 x^{12} + 210912 x^{11} + 2048373 x^{10} + 2181498 x^{9} + 15627769 x^{8} + 13178894 x^{7} + 83640050 x^{6} + 49209408 x^{5} + 302499690 x^{4} + 106404156 x^{3} + 669533749 x^{2} + 101796464 x + 691769621 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1100889381588437644156968970240000000000=2^{20}\cdot 5^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{6} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{4}{27} a^{11} - \frac{2}{27} a^{10} - \frac{1}{9} a^{9} + \frac{4}{27} a^{8} - \frac{2}{27} a^{7} + \frac{2}{27} a^{6} - \frac{4}{9} a^{5} - \frac{7}{27} a^{4} + \frac{11}{27} a^{3} + \frac{5}{27} a^{2} + \frac{1}{27} a - \frac{1}{27}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{12} + \frac{2}{27} a^{11} + \frac{2}{27} a^{10} - \frac{2}{27} a^{9} + \frac{1}{9} a^{8} + \frac{4}{27} a^{7} + \frac{1}{27} a^{6} + \frac{5}{27} a^{5} - \frac{2}{9} a^{3} + \frac{8}{27} a^{2} + \frac{7}{27} a + \frac{7}{27}$, $\frac{1}{81} a^{16} - \frac{1}{81} a^{14} - \frac{1}{27} a^{13} - \frac{2}{81} a^{12} - \frac{1}{9} a^{11} + \frac{4}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{9} a^{6} + \frac{4}{27} a^{5} + \frac{10}{81} a^{4} + \frac{1}{9} a^{3} - \frac{4}{81} a^{2} + \frac{13}{27} a - \frac{20}{81}$, $\frac{1}{81} a^{17} - \frac{1}{81} a^{15} + \frac{1}{81} a^{13} + \frac{1}{27} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{4}{27} a^{8} + \frac{1}{27} a^{7} - \frac{26}{81} a^{5} - \frac{13}{27} a^{4} + \frac{29}{81} a^{3} + \frac{2}{9} a^{2} - \frac{17}{81} a - \frac{7}{27}$, $\frac{1}{786591} a^{18} - \frac{43}{262197} a^{17} - \frac{319}{87399} a^{16} + \frac{170}{29133} a^{15} + \frac{508}{262197} a^{14} - \frac{1421}{29133} a^{13} + \frac{6784}{786591} a^{12} + \frac{7237}{87399} a^{11} - \frac{14290}{87399} a^{10} - \frac{37138}{262197} a^{9} - \frac{43273}{262197} a^{8} + \frac{2449}{29133} a^{7} - \frac{63761}{786591} a^{6} + \frac{22}{9711} a^{5} + \frac{41918}{87399} a^{4} - \frac{28189}{87399} a^{3} + \frac{9365}{20169} a^{2} - \frac{21940}{262197} a + \frac{268498}{786591}$, $\frac{1}{10081742361421649086650194749277221164412381121462076531} a^{19} - \frac{717218939265569758338499044818515549651307283695}{3360580787140549695550064916425740388137460373820692177} a^{18} + \frac{6525046458830961688072964973149848009882259685280135}{1120193595713516565183354972141913462712486791273564059} a^{17} + \frac{662163476073692125039323520212942581237022114328243}{1120193595713516565183354972141913462712486791273564059} a^{16} - \frac{52192700666388234374957789190649446189357187096066343}{3360580787140549695550064916425740388137460373820692177} a^{15} - \frac{156117221209739760806322813332155908517671952413940}{13496308382090561026305481592071246538704660135826073} a^{14} + \frac{272862885703891656737683350862500642601584762002380957}{10081742361421649086650194749277221164412381121462076531} a^{13} + \frac{90670749024109912437157345282079987886170494538365550}{3360580787140549695550064916425740388137460373820692177} a^{12} + \frac{3324145140332869494311036909134817871494082080062703}{86168738131808966552565767087839497131729753174889543} a^{11} - \frac{103275061173189010799410922316555838336477452082280}{3114532703559360236839726521247210739701075415959863} a^{10} + \frac{11069554184427096627843262953047139346173112446542312}{108405831843243538566131126336314206068950334639377167} a^{9} - \frac{156059115103206706283235324917284199151848235936478490}{1120193595713516565183354972141913462712486791273564059} a^{8} - \frac{166933763904810684919699636449464135088481842464896994}{10081742361421649086650194749277221164412381121462076531} a^{7} - \frac{198019488396621029982393078472690122187141676835600415}{3360580787140549695550064916425740388137460373820692177} a^{6} - \frac{95739745261802044882152519203702430928293943184174600}{373397865237838855061118324047304487570828930424521353} a^{5} - \frac{51374005853396067454248970761999580132136619502769771}{373397865237838855061118324047304487570828930424521353} a^{4} + \frac{881302344813566762963949606074652962666072244054105254}{3360580787140549695550064916425740388137460373820692177} a^{3} - \frac{712967277835235342788936908351529183451779715793397303}{3360580787140549695550064916425740388137460373820692177} a^{2} + \frac{162855725536971382577971122551543411367349521016410142}{775518643186280698973091903790555474185567778574005887} a + \frac{22942434870578223489649793531903754938513261279150068}{63407184663029239538680470121240384681838874977748909}$
Class group and class number
$C_{11}\times C_{22}\times C_{22}\times C_{88}$, which has order $468512$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-2005}) \), \(\Q(\sqrt{-5}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.82742277123200000.1 x5, 10.0.33179653126403200000.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||