Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 136 x^{17} + 352 x^{16} - 728 x^{15} + 1256 x^{14} - 1912 x^{13} + 3125 x^{12} - 6608 x^{11} + 16456 x^{10} - 37920 x^{9} + 71958 x^{8} - 107952 x^{7} + 126216 x^{6} - 112960 x^{5} + 75672 x^{4} - 36736 x^{3} + 12288 x^{2} - 2560 x + 256 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1099511627776000000000000000=2^{55}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{20} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{4} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{11} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{9}{20} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{20} a^{14} + \frac{1}{10} a^{11} + \frac{1}{20} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5}$, $\frac{1}{40} a^{15} + \frac{1}{20} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} + \frac{7}{20} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{40} a^{16} + \frac{1}{20} a^{11} + \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a$, $\frac{1}{80} a^{17} + \frac{1}{20} a^{11} + \frac{1}{16} a^{9} + \frac{1}{10} a^{8} - \frac{9}{20} a^{7} - \frac{2}{5} a^{6} + \frac{3}{8} a^{5} + \frac{1}{10} a^{4} - \frac{2}{5} a^{2} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{32800} a^{18} - \frac{87}{16400} a^{17} - \frac{71}{8200} a^{16} + \frac{1}{328} a^{15} + \frac{13}{4100} a^{14} + \frac{11}{4100} a^{13} - \frac{73}{4100} a^{12} + \frac{141}{4100} a^{11} - \frac{3891}{32800} a^{10} + \frac{1157}{16400} a^{9} - \frac{199}{1640} a^{8} + \frac{187}{8200} a^{7} - \frac{1}{3280} a^{6} - \frac{619}{8200} a^{5} + \frac{787}{2050} a^{4} + \frac{1337}{4100} a^{3} - \frac{121}{820} a^{2} + \frac{223}{1025} a + \frac{226}{1025}$, $\frac{1}{485190809929662400} a^{19} + \frac{1320035664149}{242595404964831200} a^{18} - \frac{112283427234367}{30324425620603900} a^{17} + \frac{225954231697957}{30324425620603900} a^{16} + \frac{152488294984383}{60648851241207800} a^{15} - \frac{935576225424763}{60648851241207800} a^{14} - \frac{917458367823051}{60648851241207800} a^{13} + \frac{177706530010909}{12129770248241560} a^{12} - \frac{1869933115581651}{19407632397186496} a^{11} - \frac{1873574473355699}{242595404964831200} a^{10} + \frac{743944947325697}{7581106405150975} a^{9} - \frac{13417517995308179}{60648851241207800} a^{8} + \frac{100792214764696943}{242595404964831200} a^{7} + \frac{52189249657793331}{121297702482415600} a^{6} + \frac{4253994527451961}{12129770248241560} a^{5} + \frac{350474981098093}{3032442562060390} a^{4} + \frac{4497731868264789}{60648851241207800} a^{3} - \frac{12892004196682259}{30324425620603900} a^{2} + \frac{1637171758705547}{15162212810301950} a - \frac{2300640966692029}{7581106405150975}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1993746.99362 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.256000.2, 5.1.256000.1 x5, 10.2.2621440000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.256000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |