Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{18} - 38 x^{17} + 202 x^{16} - 401 x^{15} + 927 x^{14} - 933 x^{13} + 1347 x^{12} - 772 x^{11} + 1331 x^{10} - 772 x^{9} + 1347 x^{8} - 933 x^{7} + 927 x^{6} - 401 x^{5} + 202 x^{4} - 38 x^{3} + 16 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1098418932986448505871281640625=3^{20}\cdot 5^{8}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{2}{9} a^{7} - \frac{4}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{1}{27} a^{15} - \frac{1}{27} a^{14} - \frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{2}{27} a^{10} - \frac{4}{27} a^{9} + \frac{1}{27} a^{8} - \frac{2}{27} a^{7} + \frac{4}{27} a^{6} + \frac{7}{27} a^{5} - \frac{8}{27} a^{4} + \frac{4}{27} a^{3} - \frac{7}{27} a^{2} + \frac{8}{27} a - \frac{4}{27}$, $\frac{1}{46935639} a^{18} - \frac{841783}{46935639} a^{17} - \frac{836587}{46935639} a^{16} - \frac{60907}{15645213} a^{15} + \frac{2075530}{46935639} a^{14} - \frac{618689}{46935639} a^{13} + \frac{7673590}{46935639} a^{12} + \frac{6119272}{46935639} a^{11} + \frac{4886725}{46935639} a^{10} + \frac{903227}{15645213} a^{9} + \frac{1410011}{46935639} a^{8} - \frac{13002655}{46935639} a^{7} + \frac{14627018}{46935639} a^{6} + \frac{16764881}{46935639} a^{5} + \frac{9028958}{46935639} a^{4} + \frac{559150}{5215071} a^{3} + \frac{18285340}{46935639} a^{2} - \frac{2580140}{46935639} a - \frac{8691784}{46935639}$, $\frac{1}{72515562255} a^{19} - \frac{106}{72515562255} a^{18} + \frac{60188992}{4834370817} a^{17} + \frac{239083852}{72515562255} a^{16} - \frac{1513391101}{72515562255} a^{15} - \frac{1260347669}{24171854085} a^{14} + \frac{135223388}{4834370817} a^{13} - \frac{1811211241}{24171854085} a^{12} - \frac{3378501917}{24171854085} a^{11} - \frac{7106189188}{72515562255} a^{10} - \frac{5261869952}{72515562255} a^{9} + \frac{1036109807}{24171854085} a^{8} - \frac{9394026539}{24171854085} a^{7} + \frac{2178438817}{4834370817} a^{6} - \frac{5823727546}{24171854085} a^{5} - \frac{15975181394}{72515562255} a^{4} - \frac{35061378247}{72515562255} a^{3} + \frac{834661133}{4834370817} a^{2} + \frac{26560082431}{72515562255} a - \frac{17267996761}{72515562255}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4494054401}{24171854085} a^{19} + \frac{7503901166}{24171854085} a^{18} - \frac{4572761209}{1611456939} a^{17} + \frac{146242436563}{24171854085} a^{16} - \frac{845779165804}{24171854085} a^{15} + \frac{495974566229}{8057284695} a^{14} - \frac{233271727619}{1611456939} a^{13} + \frac{98664508699}{895253855} a^{12} - \frac{1443680247208}{8057284695} a^{11} + \frac{1107197083493}{24171854085} a^{10} - \frac{4385030133218}{24171854085} a^{9} + \frac{407543786608}{8057284695} a^{8} - \frac{167378804259}{895253855} a^{7} + \frac{126300060380}{1611456939} a^{6} - \frac{786468833759}{8057284695} a^{5} + \frac{73539968254}{24171854085} a^{4} - \frac{42139256053}{24171854085} a^{3} - \frac{17191951748}{1611456939} a^{2} - \frac{2366410541}{24171854085} a - \frac{832754704}{24171854085} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9746537.71101 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.10791225.1, 10.0.349351611001875.1, 10.8.349351611001875.1, 10.2.1048054833005625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |