Normalized defining polynomial
\( x^{20} - 2 x^{19} + 15 x^{18} - 28 x^{17} + 390 x^{16} - 584 x^{15} + 6781 x^{14} - 8202 x^{13} + 94062 x^{12} - 80862 x^{11} + 1031934 x^{10} - 807582 x^{9} + 9013852 x^{8} - 6208538 x^{7} + 58673502 x^{6} - 30342304 x^{5} + 261654120 x^{4} - 73298264 x^{3} + 727173193 x^{2} - 42959304 x + 940204701 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1097512253107525471809057479895040000000000=2^{20}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(820=2^{2}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{820}(1,·)$, $\chi_{820}(619,·)$, $\chi_{820}(441,·)$, $\chi_{820}(201,·)$, $\chi_{820}(139,·)$, $\chi_{820}(461,·)$, $\chi_{820}(141,·)$, $\chi_{820}(81,·)$, $\chi_{820}(599,·)$, $\chi_{820}(221,·)$, $\chi_{820}(739,·)$, $\chi_{820}(359,·)$, $\chi_{820}(681,·)$, $\chi_{820}(679,·)$, $\chi_{820}(59,·)$, $\chi_{820}(819,·)$, $\chi_{820}(119,·)$, $\chi_{820}(761,·)$, $\chi_{820}(379,·)$, $\chi_{820}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{2241} a^{18} - \frac{40}{2241} a^{17} + \frac{10}{249} a^{16} + \frac{319}{2241} a^{15} - \frac{101}{2241} a^{14} + \frac{70}{747} a^{13} + \frac{77}{2241} a^{12} + \frac{158}{2241} a^{11} - \frac{50}{2241} a^{10} + \frac{9}{83} a^{9} + \frac{346}{2241} a^{8} - \frac{818}{2241} a^{7} + \frac{260}{747} a^{6} - \frac{223}{2241} a^{5} - \frac{478}{2241} a^{4} + \frac{67}{249} a^{3} - \frac{82}{2241} a^{2} - \frac{10}{249} a + \frac{107}{249}$, $\frac{1}{102812957539345748978196468243171643330537703996292256820827161} a^{19} + \frac{5803200741132395042059229981242932045094510655695417162424}{34270985846448582992732156081057214443512567998764085606942387} a^{18} + \frac{4050344498223487185803977460357817631534317378684623564505047}{102812957539345748978196468243171643330537703996292256820827161} a^{17} - \frac{5111372620617563486253777825772636495860025149237081412335839}{102812957539345748978196468243171643330537703996292256820827161} a^{16} - \frac{12995226219942553861402078377035719829694411473279380279951024}{102812957539345748978196468243171643330537703996292256820827161} a^{15} - \frac{1432861233308767899855392304470701882070758244778138890132744}{102812957539345748978196468243171643330537703996292256820827161} a^{14} + \frac{12790472631013076220827885735138595513693960672205352027541674}{102812957539345748978196468243171643330537703996292256820827161} a^{13} + \frac{2449904908470565431453489347202660972609724776376523392194277}{102812957539345748978196468243171643330537703996292256820827161} a^{12} + \frac{2358838039878017477378743413617879166769935194274789007586861}{34270985846448582992732156081057214443512567998764085606942387} a^{11} + \frac{11406761439409315851228832609722048226597336504356347963318827}{102812957539345748978196468243171643330537703996292256820827161} a^{10} - \frac{675776454124401970260469250607431179540326142127050189596374}{102812957539345748978196468243171643330537703996292256820827161} a^{9} - \frac{6502289771396727520383911920873920471064769443619502943242985}{102812957539345748978196468243171643330537703996292256820827161} a^{8} - \frac{24666868432142204565562624575216626409050787487048142871290789}{102812957539345748978196468243171643330537703996292256820827161} a^{7} - \frac{31011082228142134049910320892469735806140369637814678990926640}{102812957539345748978196468243171643330537703996292256820827161} a^{6} + \frac{194996762140607976205556293385399658595931050239557797450409}{1238710331799346373231282749917730642536598843328822371335267} a^{5} + \frac{9695208142117424807873731244781938321710233072480135334753412}{102812957539345748978196468243171643330537703996292256820827161} a^{4} + \frac{25516009618598477508926066560407269537096701441940997471109127}{102812957539345748978196468243171643330537703996292256820827161} a^{3} + \frac{30801870378630106335378177766242624502486176783778882081511864}{102812957539345748978196468243171643330537703996292256820827161} a^{2} + \frac{536305959980592599503629854666039462941149771877402441739537}{3807887316272064776970239564561912715945840888751565067438043} a - \frac{19685562205702218135094323806464666133731906586562717303532}{70083815636909167674298887691323546919248605314445982836283}$
Class group and class number
$C_{22}\times C_{22}\times C_{4510}$, which has order $2182840$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.636551031 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-205}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-5}, \sqrt{41})\), 5.5.2825761.1, 10.0.1047622190060675200000.1, 10.0.25551760733187200000.2, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |