Normalized defining polynomial
\( x^{20} + 103 x^{18} + 4075 x^{16} + 81286 x^{14} + 881785 x^{12} + 5146456 x^{10} + 14712760 x^{8} + 16100059 x^{6} + 5678089 x^{4} + 442026 x^{2} + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1097512253107525471809057479895040000000000=2^{20}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(820=2^{2}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{820}(1,·)$, $\chi_{820}(769,·)$, $\chi_{820}(201,·)$, $\chi_{820}(139,·)$, $\chi_{820}(141,·)$, $\chi_{820}(269,·)$, $\chi_{820}(209,·)$, $\chi_{820}(739,·)$, $\chi_{820}(409,·)$, $\chi_{820}(461,·)$, $\chi_{820}(271,·)$, $\chi_{820}(221,·)$, $\chi_{820}(351,·)$, $\chi_{820}(291,·)$, $\chi_{820}(31,·)$, $\chi_{820}(491,·)$, $\chi_{820}(59,·)$, $\chi_{820}(119,·)$, $\chi_{820}(379,·)$, $\chi_{820}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{9} a^{4} - \frac{7}{27} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} + \frac{1}{27} a^{6} + \frac{8}{81} a^{4} - \frac{13}{27} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} + \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{729} a^{12} - \frac{4}{729} a^{10} - \frac{4}{243} a^{8} - \frac{13}{729} a^{6} - \frac{8}{729} a^{4} - \frac{32}{81} a^{2} + \frac{4}{9}$, $\frac{1}{729} a^{13} - \frac{4}{729} a^{11} - \frac{1}{243} a^{9} - \frac{40}{729} a^{7} + \frac{19}{729} a^{5} + \frac{4}{27} a^{3} - \frac{1}{9} a$, $\frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} - \frac{5}{6561} a^{10} + \frac{8}{6561} a^{8} + \frac{251}{6561} a^{6} - \frac{841}{6561} a^{4} - \frac{115}{729} a^{2} + \frac{20}{81}$, $\frac{1}{6561} a^{15} + \frac{1}{6561} a^{13} - \frac{5}{6561} a^{11} + \frac{8}{6561} a^{9} + \frac{251}{6561} a^{7} - \frac{841}{6561} a^{5} - \frac{115}{729} a^{3} + \frac{20}{81} a$, $\frac{1}{59049} a^{16} - \frac{2}{19683} a^{12} + \frac{256}{59049} a^{10} - \frac{607}{19683} a^{6} + \frac{5395}{59049} a^{4} - \frac{731}{6561} a^{2} + \frac{34}{729}$, $\frac{1}{59049} a^{17} - \frac{2}{19683} a^{13} + \frac{256}{59049} a^{11} - \frac{607}{19683} a^{7} + \frac{5395}{59049} a^{5} - \frac{731}{6561} a^{3} + \frac{34}{729} a$, $\frac{1}{13289610632427} a^{18} + \frac{12886757}{13289610632427} a^{16} + \frac{240907417}{4429870210809} a^{14} + \frac{645447412}{13289610632427} a^{12} - \frac{71008381651}{13289610632427} a^{10} - \frac{59090565649}{4429870210809} a^{8} - \frac{541769617820}{13289610632427} a^{6} + \frac{1693759226801}{13289610632427} a^{4} - \frac{524494231486}{1476623403603} a^{2} + \frac{69823685774}{164069267067}$, $\frac{1}{13289610632427} a^{19} + \frac{12886757}{13289610632427} a^{17} + \frac{240907417}{4429870210809} a^{15} + \frac{645447412}{13289610632427} a^{13} - \frac{71008381651}{13289610632427} a^{11} - \frac{4400809960}{4429870210809} a^{9} + \frac{442645984582}{13289610632427} a^{7} - \frac{767279779204}{13289610632427} a^{5} - \frac{50516348848}{1476623403603} a^{3} + \frac{33363848648}{164069267067} a$
Class group and class number
$C_{2}\times C_{2561680}$, which has order $5123360$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1770719412.3197536 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-41}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{205}) \), \(\Q(\sqrt{-5}, \sqrt{-41})\), 5.5.2825761.1, 10.0.335239100819416064.1, 10.0.25551760733187200000.2, 10.10.1023068544981128125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |