Normalized defining polynomial
\( x^{20} - 8 x^{19} + 11 x^{18} + 72 x^{17} - 26 x^{16} - 1320 x^{15} + 1224 x^{14} + 11878 x^{13} - 4180 x^{12} - 102854 x^{11} + 8986 x^{10} + 682712 x^{9} + 349107 x^{8} - 3332126 x^{7} - 2328113 x^{6} + 10868044 x^{5} + 26804764 x^{4} - 46370542 x^{3} - 21459284 x^{2} - 30430726 x + 154880969 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109460540927745402703534939794619140625=5^{10}\cdot 11^{18}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(935=5\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{935}(256,·)$, $\chi_{935}(1,·)$, $\chi_{935}(579,·)$, $\chi_{935}(526,·)$, $\chi_{935}(16,·)$, $\chi_{935}(849,·)$, $\chi_{935}(851,·)$, $\chi_{935}(84,·)$, $\chi_{935}(86,·)$, $\chi_{935}(919,·)$, $\chi_{935}(409,·)$, $\chi_{935}(356,·)$, $\chi_{935}(934,·)$, $\chi_{935}(679,·)$, $\chi_{935}(424,·)$, $\chi_{935}(494,·)$, $\chi_{935}(239,·)$, $\chi_{935}(696,·)$, $\chi_{935}(441,·)$, $\chi_{935}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{178} a^{12} + \frac{15}{178} a^{11} + \frac{10}{89} a^{10} + \frac{37}{89} a^{9} + \frac{4}{89} a^{8} + \frac{43}{89} a^{7} + \frac{11}{178} a^{6} + \frac{85}{178} a^{5} + \frac{4}{89} a^{4} - \frac{32}{89} a^{3} + \frac{49}{178} a^{2} - \frac{44}{89} a + \frac{31}{89}$, $\frac{1}{178} a^{13} - \frac{27}{178} a^{11} + \frac{41}{178} a^{10} + \frac{55}{178} a^{9} - \frac{17}{89} a^{8} - \frac{33}{178} a^{7} - \frac{40}{89} a^{6} - \frac{21}{178} a^{5} + \frac{83}{178} a^{4} + \frac{15}{89} a^{3} + \frac{67}{178} a^{2} - \frac{21}{89} a + \frac{49}{178}$, $\frac{1}{178} a^{14} + \frac{1}{178} a^{11} - \frac{14}{89} a^{10} + \frac{3}{89} a^{9} + \frac{5}{178} a^{8} - \frac{36}{89} a^{7} - \frac{40}{89} a^{6} - \frac{25}{178} a^{5} - \frac{21}{178} a^{4} - \frac{59}{178} a^{3} + \frac{35}{178} a^{2} + \frac{38}{89} a + \frac{36}{89}$, $\frac{1}{178} a^{15} - \frac{43}{178} a^{11} - \frac{7}{89} a^{10} - \frac{69}{178} a^{9} - \frac{40}{89} a^{8} + \frac{6}{89} a^{7} - \frac{18}{89} a^{6} + \frac{36}{89} a^{5} - \frac{67}{178} a^{4} - \frac{79}{178} a^{3} + \frac{27}{178} a^{2} - \frac{9}{89} a - \frac{31}{89}$, $\frac{1}{178} a^{16} + \frac{4}{89} a^{11} - \frac{5}{89} a^{10} + \frac{38}{89} a^{9} - \frac{38}{89} a^{7} + \frac{11}{178} a^{6} - \frac{61}{178} a^{5} - \frac{1}{89} a^{4} - \frac{55}{178} a^{3} - \frac{47}{178} a^{2} - \frac{19}{178} a - \frac{2}{89}$, $\frac{1}{178} a^{17} - \frac{41}{178} a^{11} + \frac{5}{178} a^{10} - \frac{29}{89} a^{9} + \frac{19}{89} a^{8} + \frac{35}{178} a^{7} + \frac{29}{178} a^{6} - \frac{59}{178} a^{5} - \frac{15}{89} a^{4} - \frac{69}{178} a^{3} - \frac{55}{178} a^{2} + \frac{77}{178} a + \frac{19}{89}$, $\frac{1}{7654} a^{18} + \frac{21}{7654} a^{17} - \frac{8}{3827} a^{16} + \frac{6}{3827} a^{15} + \frac{3}{3827} a^{14} - \frac{3}{3827} a^{13} - \frac{7}{3827} a^{12} + \frac{1743}{7654} a^{11} - \frac{852}{3827} a^{10} + \frac{2307}{7654} a^{9} + \frac{1213}{7654} a^{8} - \frac{1721}{3827} a^{7} - \frac{1363}{7654} a^{6} - \frac{1160}{3827} a^{5} + \frac{84}{3827} a^{4} + \frac{2663}{7654} a^{3} - \frac{2075}{7654} a^{2} + \frac{3279}{7654} a - \frac{11}{178}$, $\frac{1}{4813483962189316240363870000172764486052518028147325937238} a^{19} + \frac{120845376510118581276718998034028692976678508485397771}{2406741981094658120181935000086382243026259014073662968619} a^{18} - \frac{6686170562651222132370628324074963422228653832396294213}{4813483962189316240363870000172764486052518028147325937238} a^{17} - \frac{6676516120220507759644507818416901290528905339162699727}{2406741981094658120181935000086382243026259014073662968619} a^{16} - \frac{5967649045898218639227282292497248050253668516159719621}{4813483962189316240363870000172764486052518028147325937238} a^{15} + \frac{9300952843713327788633192151769511650072610182769318785}{4813483962189316240363870000172764486052518028147325937238} a^{14} + \frac{638370824555146878778238300933979025882736976350565806}{2406741981094658120181935000086382243026259014073662968619} a^{13} - \frac{9738903635146989077719473622624497875621040228089353551}{4813483962189316240363870000172764486052518028147325937238} a^{12} + \frac{1116987488246679898217748221580881017744424216205493160563}{4813483962189316240363870000172764486052518028147325937238} a^{11} - \frac{188317367427655415645473171438028607332837375108719534616}{2406741981094658120181935000086382243026259014073662968619} a^{10} - \frac{325508917987561471755225930759450830628327491425090276050}{2406741981094658120181935000086382243026259014073662968619} a^{9} - \frac{219553483734022487894353922692310190547209363966191568471}{2406741981094658120181935000086382243026259014073662968619} a^{8} - \frac{910454846273941545368270448912384393905135305994315635509}{4813483962189316240363870000172764486052518028147325937238} a^{7} + \frac{1727285311359140950255316335343565531191652600802243561679}{4813483962189316240363870000172764486052518028147325937238} a^{6} + \frac{25113280698237322368626211276373441091234280231159833239}{111941487492774796287531860469134057815174837863891300866} a^{5} - \frac{1062765309976449684001266881301029429546780556894750178414}{2406741981094658120181935000086382243026259014073662968619} a^{4} + \frac{2072232471775642481797601375077004741408835120352690233065}{4813483962189316240363870000172764486052518028147325937238} a^{3} + \frac{86689399631720732750562334943273801853259204873618535333}{2406741981094658120181935000086382243026259014073662968619} a^{2} - \frac{392117978129323185955077400060287692899898177428562311730}{2406741981094658120181935000086382243026259014073662968619} a + \frac{7748163587697056036379684512244295252627538162790234835}{55970743746387398143765930234567028907587418931945650433}$
Class group and class number
$C_{17416}$, which has order $17416$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3338983.62101 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-935}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{17}, \sqrt{-55})\), \(\Q(\zeta_{11})^+\), 10.0.10462339170938084375.1, 10.0.7368586534375.1, 10.10.304358957700017.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $17$ | 17.10.5.1 | $x^{10} - 578 x^{6} + 83521 x^{2} - 51114852$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 17.10.5.1 | $x^{10} - 578 x^{6} + 83521 x^{2} - 51114852$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |