Normalized defining polynomial
\( x^{20} - 2 x^{19} - 12 x^{17} + 52 x^{16} - 228 x^{15} + 410 x^{14} + 294 x^{13} + 1303 x^{12} - 7107 x^{11} + 4413 x^{10} - 25589 x^{9} + 83612 x^{8} + 69081 x^{7} - 141961 x^{6} - 440055 x^{5} - 613169 x^{4} - 59794 x^{3} + 3668677 x^{2} + 3387292 x + 2233351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109321305666509476480595703125=5^{10}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{10341490957011044062937283676597717089267031301811300456797170175963} a^{19} - \frac{3783753672189291553543793764929742008099999328580979007686119709479}{10341490957011044062937283676597717089267031301811300456797170175963} a^{18} + \frac{1110062288503350011425264141567981251046451685122876075654553900100}{10341490957011044062937283676597717089267031301811300456797170175963} a^{17} + \frac{3197401024421173144218533627129979110427752153733698160871893860991}{10341490957011044062937283676597717089267031301811300456797170175963} a^{16} - \frac{4695219870647445295601062225520601047516206241710556875791796909944}{10341490957011044062937283676597717089267031301811300456797170175963} a^{15} + \frac{1030831877441447543770457991888220100476912190348689411218697285762}{10341490957011044062937283676597717089267031301811300456797170175963} a^{14} - \frac{1170789216189708115928937319158723913876593256214483362582303682022}{10341490957011044062937283676597717089267031301811300456797170175963} a^{13} + \frac{4524156484961301149835237040797989817663765460289942141890503197151}{10341490957011044062937283676597717089267031301811300456797170175963} a^{12} + \frac{1667649785210973538989141590733495404080164748922806200857772480800}{10341490957011044062937283676597717089267031301811300456797170175963} a^{11} - \frac{2027139177371325525089751912201300548729845316459158345754399449016}{10341490957011044062937283676597717089267031301811300456797170175963} a^{10} + \frac{3769622382732964327320871286424477487930024179387279283490406267434}{10341490957011044062937283676597717089267031301811300456797170175963} a^{9} + \frac{1997888306699890282139487018209152426938730654085112887310875426296}{10341490957011044062937283676597717089267031301811300456797170175963} a^{8} + \frac{3573053080543867998278332651683156138465720788341362790367528021097}{10341490957011044062937283676597717089267031301811300456797170175963} a^{7} + \frac{3518200096227944348094532465996055824585929215539062810697199567066}{10341490957011044062937283676597717089267031301811300456797170175963} a^{6} + \frac{1253720151644561135019401136937029803706854011402503929035319772899}{10341490957011044062937283676597717089267031301811300456797170175963} a^{5} - \frac{4839264985999455224485870075384617606639486812766515836745201036252}{10341490957011044062937283676597717089267031301811300456797170175963} a^{4} - \frac{3829042713244380828855770337429050929368948519894905738159036979726}{10341490957011044062937283676597717089267031301811300456797170175963} a^{3} - \frac{1834794095854624878421821664709732718389213096143118331017555679397}{10341490957011044062937283676597717089267031301811300456797170175963} a^{2} + \frac{3527029495567783480914490190698589311818896456674988495779483372726}{10341490957011044062937283676597717089267031301811300456797170175963} a - \frac{2383312896333394930216447005709532962041830009340199476294633542817}{10341490957011044062937283676597717089267031301811300456797170175963}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 623585.5305503157 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.94325.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |