Normalized defining polynomial
\( x^{20} - 5 x^{19} + 18 x^{18} - 40 x^{17} + 79 x^{16} - 120 x^{15} + 242 x^{14} - 345 x^{13} + 641 x^{12} - 1005 x^{11} + 1640 x^{10} - 1910 x^{9} + 1900 x^{8} - 1125 x^{7} + 660 x^{6} - 225 x^{5} + 200 x^{4} - 75 x^{3} + 75 x^{2} + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1085041785093811798095703125=3^{4}\cdot 5^{17}\cdot 23^{4}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{6}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{7}$, $\frac{1}{1349495645} a^{18} - \frac{8634994}{1349495645} a^{17} - \frac{17751374}{269899129} a^{16} - \frac{13989841}{1349495645} a^{15} + \frac{62979927}{1349495645} a^{14} + \frac{217040952}{1349495645} a^{13} + \frac{344798981}{1349495645} a^{12} + \frac{24026091}{1349495645} a^{11} + \frac{580190458}{1349495645} a^{10} + \frac{667221458}{1349495645} a^{9} + \frac{257763906}{1349495645} a^{8} - \frac{181765639}{1349495645} a^{7} - \frac{75614098}{1349495645} a^{6} - \frac{98957409}{269899129} a^{5} - \frac{133696715}{269899129} a^{4} + \frac{27107665}{269899129} a^{3} - \frac{80640554}{269899129} a^{2} - \frac{57405553}{269899129} a - \frac{127331027}{269899129}$, $\frac{1}{568785903525553975} a^{19} + \frac{34014339}{113757180705110795} a^{18} - \frac{54518616264271677}{568785903525553975} a^{17} + \frac{332260086870279}{22751436141022159} a^{16} - \frac{30687451387804306}{568785903525553975} a^{15} - \frac{6441503215256229}{113757180705110795} a^{14} - \frac{13156399014954393}{568785903525553975} a^{13} - \frac{49600288789116214}{113757180705110795} a^{12} + \frac{237096325539864561}{568785903525553975} a^{11} + \frac{42315314458899799}{113757180705110795} a^{10} + \frac{4729625644343085}{22751436141022159} a^{9} + \frac{53649572962313898}{113757180705110795} a^{8} + \frac{14442448410131803}{113757180705110795} a^{7} + \frac{42822147639436151}{113757180705110795} a^{6} + \frac{41754312298207501}{113757180705110795} a^{5} + \frac{9381325166739161}{22751436141022159} a^{4} - \frac{1535491172829601}{22751436141022159} a^{3} + \frac{750611618940513}{22751436141022159} a^{2} + \frac{678937280753706}{22751436141022159} a + \frac{208026317488520}{22751436141022159}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{526709356442193}{113757180705110795} a^{19} - \frac{480639196888279}{22751436141022159} a^{18} + \frac{8319278728144466}{113757180705110795} a^{17} - \frac{16905463858572337}{113757180705110795} a^{16} + \frac{32078019265936643}{113757180705110795} a^{15} - \frac{44095553123255988}{113757180705110795} a^{14} + \frac{96946848293554989}{113757180705110795} a^{13} - \frac{122425219848288339}{113757180705110795} a^{12} + \frac{251258954426526997}{113757180705110795} a^{11} - \frac{379168228525962452}{113757180705110795} a^{10} + \frac{607098133516886477}{113757180705110795} a^{9} - \frac{622640460205027811}{113757180705110795} a^{8} + \frac{101701611501917285}{22751436141022159} a^{7} - \frac{111285448525487337}{113757180705110795} a^{6} + \frac{1008631017193228}{22751436141022159} a^{5} - \frac{3428349719463868}{22751436141022159} a^{4} + \frac{29773512852415748}{22751436141022159} a^{3} - \frac{56202901380168562}{22751436141022159} a^{2} + \frac{12068114082782085}{22751436141022159} a + \frac{1698424203409379}{22751436141022159} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366014.001413 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times S_5$ (as 20T123):
| A non-solvable group of order 480 |
| The 28 conjugacy class representatives for $C_4\times S_5$ |
| Character table for $C_4\times S_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |