Normalized defining polynomial
\( x^{20} - 10 x^{19} + 71 x^{18} - 354 x^{17} + 1498 x^{16} - 5252 x^{15} + 15921 x^{14} - 41161 x^{13} + 91806 x^{12} - 175591 x^{11} + 279549 x^{10} - 360176 x^{9} + 349654 x^{8} - 219873 x^{7} + 5435 x^{6} + 182237 x^{5} - 39506 x^{4} - 227550 x^{3} + 229548 x^{2} - 86247 x + 12321 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1083153147151571524051666259765625=3^{10}\cdot 5^{18}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{1665} a^{16} - \frac{8}{1665} a^{15} - \frac{19}{555} a^{14} + \frac{539}{1665} a^{13} - \frac{142}{1665} a^{12} + \frac{47}{555} a^{11} + \frac{694}{1665} a^{10} + \frac{157}{1665} a^{9} - \frac{704}{1665} a^{8} - \frac{1}{5} a^{7} - \frac{688}{1665} a^{6} - \frac{358}{1665} a^{5} - \frac{52}{185} a^{4} + \frac{661}{1665} a^{3} - \frac{323}{1665} a^{2} - \frac{7}{15} a - \frac{1}{15}$, $\frac{1}{1665} a^{17} - \frac{121}{1665} a^{15} + \frac{83}{1665} a^{14} - \frac{55}{111} a^{13} + \frac{134}{333} a^{12} + \frac{157}{1665} a^{11} + \frac{238}{555} a^{10} + \frac{184}{555} a^{9} + \frac{139}{333} a^{8} - \frac{22}{1665} a^{7} + \frac{266}{555} a^{6} - \frac{2}{1665} a^{5} + \frac{247}{1665} a^{4} - \frac{2}{111} a^{3} - \frac{31}{1665} a^{2} + \frac{1}{5} a + \frac{7}{15}$, $\frac{1}{884627028143159874615} a^{18} - \frac{1}{98291892015906652735} a^{17} + \frac{245181081264902708}{884627028143159874615} a^{16} - \frac{392289730023844292}{176925405628631974923} a^{15} - \frac{16203407876969640218}{294875676047719958205} a^{14} + \frac{53513845256206974202}{126375289734737124945} a^{13} - \frac{7469663118914032097}{23908838598463780395} a^{12} + \frac{4662107707378341134}{17345628002807056365} a^{11} - \frac{1464686409576224654}{4401129493249551615} a^{10} + \frac{11622825890488816477}{52036884008421169095} a^{9} + \frac{323166017592265396784}{884627028143159874615} a^{8} + \frac{111615380163812879924}{294875676047719958205} a^{7} + \frac{36800725584815164481}{176925405628631974923} a^{6} - \frac{12226821275471358503}{126375289734737124945} a^{5} - \frac{37259950105854858832}{294875676047719958205} a^{4} + \frac{11550317223251502526}{25275057946947424989} a^{3} - \frac{17741729108960238908}{98291892015906652735} a^{2} - \frac{5603926726791427}{25625764842940815} a + \frac{863115134859235003}{2656537622051531155}$, $\frac{1}{4443481562363092050191145} a^{19} + \frac{278}{493720173595899116687905} a^{18} - \frac{715426054299417613048}{4443481562363092050191145} a^{17} + \frac{1666633957295478292}{296232104157539470012743} a^{16} + \frac{38846667442541457684442}{634783080337584578598735} a^{15} - \frac{206447289219692645199134}{4443481562363092050191145} a^{14} - \frac{246091284934679595521717}{493720173595899116687905} a^{13} - \frac{6911155167357722947334}{16518518819193650744205} a^{12} - \frac{600684908143690055389213}{1481160520787697350063715} a^{11} - \frac{420698388660628150905484}{1481160520787697350063715} a^{10} - \frac{77916525121350220728791}{1481160520787697350063715} a^{9} - \frac{2198911533736686413826131}{4443481562363092050191145} a^{8} - \frac{45891703013590024842569}{634783080337584578598735} a^{7} + \frac{33290522380862653165024}{87127089458099844121395} a^{6} + \frac{492727354089971604575294}{4443481562363092050191145} a^{5} - \frac{1097482234185229324731532}{4443481562363092050191145} a^{4} - \frac{1797468419499353857253594}{4443481562363092050191145} a^{3} + \frac{3820655982467342858002}{66320620333777493286435} a^{2} + \frac{1973896276121818282499}{40031365426694522974695} a - \frac{9578707222907711109847}{40031365426694522974695}$
Class group and class number
$C_{16}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85002563.2373 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 16 conjugacy class representatives for $D_5^2$ |
| Character table for $D_5^2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{185}) \), \(\Q(\sqrt{-15}, \sqrt{-111})\), 10.0.6582258418359375.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.10.13.7 | $x^{10} + 5 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_5$ | $[3/2]_{2}$ | |
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |