Normalized defining polynomial
\( x^{20} - 7 x^{19} + 139 x^{18} - 782 x^{17} + 8304 x^{16} - 38164 x^{15} + 282210 x^{14} - 1066070 x^{13} + 6059682 x^{12} - 18764856 x^{11} + 86065041 x^{10} - 215819750 x^{9} + 820377495 x^{8} - 1623921679 x^{7} + 5194846005 x^{6} - 7728153702 x^{5} + 20977732177 x^{4} - 21172817140 x^{3} + 48965425278 x^{2} - 25512798670 x + 50483698079 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10800753337779736826690692535166015625=5^{10}\cdot 31^{4}\cdot 71^{4}\cdot 2161^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 71, 2161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{19} - \frac{94644324984671088463345102568184081378799251300546290804983657062368855002}{630922202982573465503732507429281522617283841154495314361036827133748055177} a^{18} + \frac{3478902472205682376894983567704913420633236823246609213411443907243289090}{6984378630803396297089289750139647851851850640086663996616643842809019061} a^{17} - \frac{524865528462330816265968990751744269152444906791738268225085534159094906582}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{16} + \frac{162799904174405839810552222602070557838109347329871950851453310745904275349}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{15} + \frac{621121064425392564742717717670333291611814511415219164460147515006591650707}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{14} - \frac{43462120713929470951904346514877170671360925635506437135392146946740076356}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{13} - \frac{790942309601741514215858966949742898609374330290712563026792025174098724538}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{12} - \frac{746833223675828386492624952908572018992473244628684386042020902000634101007}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{11} - \frac{806622134395234173987521444253464326695360175002933826587295293678716378668}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{10} + \frac{874330426356735051146701977746111289311618733311394608347802485402193568062}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{9} + \frac{311283221863579238995289580652653843451867602709007941477972498119827847909}{630922202982573465503732507429281522617283841154495314361036827133748055177} a^{8} + \frac{169376776938193625274971991787358264678563962354310714133134004389772627887}{630922202982573465503732507429281522617283841154495314361036827133748055177} a^{7} - \frac{33475204728781827249027147034703678747335939635588811649988682062466063828}{99619295207774757711115659067781293044834290708604523320163709547433903449} a^{6} + \frac{748701145542608206369257850375031125407339621885535456552313194537018594730}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{5} + \frac{353667835144592735240417324882036740642450174901079962252963982099026511188}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{4} + \frac{75694740682136233620908109069974866987961416573340162971747322453241979231}{630922202982573465503732507429281522617283841154495314361036827133748055177} a^{3} + \frac{200118028504114333137493282680409858727805793355411405312193855927666380060}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a^{2} - \frac{802498473492710478699293739091990606566612789690567483752489669621147303305}{1892766608947720396511197522287844567851851523463485943083110481401244165531} a + \frac{6049551139393777999813974780241142583975879028423499592098618480453099956}{99619295207774757711115659067781293044834290708604523320163709547433903449}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2258908274.67 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 800 |
| The 44 conjugacy class representatives for t20n168 |
| Character table for t20n168 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.54025.1, 10.2.15138753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2161 | Data not computed | ||||||