Normalized defining polynomial
\( x^{20} - 3 x^{19} + 120 x^{18} - 311 x^{17} + 6424 x^{16} - 14503 x^{15} + 202822 x^{14} - 400895 x^{13} + 4194686 x^{12} - 7251477 x^{11} + 59444659 x^{10} - 88813431 x^{9} + 583819605 x^{8} - 732444355 x^{7} + 3910053860 x^{6} - 3897482918 x^{5} + 17011183013 x^{4} - 12094971499 x^{3} + 43219440899 x^{2} - 16688451949 x + 48517907351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10800753337779736826690692535166015625=5^{10}\cdot 31^{4}\cdot 71^{4}\cdot 2161^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 71, 2161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{19} + \frac{687430357437447435426467403417593248459102113085814708693452179611334480455}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{18} - \frac{99443771186541422400130627968155739387318856403007483752703192556115416616}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{17} - \frac{315565059816576677755195670880096998620668364927280600108428304081567483234}{633147942655589469488406068178783059601579191922833974097612724868245929297} a^{16} - \frac{44245549457140925154513338109880094341749075196675107584569161163731160421}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{15} + \frac{95667459272274601493300525021476506899689749161742662034491266725004538092}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{14} + \frac{270186275704017413760546472219183611704629269377757666335404636977483593743}{633147942655589469488406068178783059601579191922833974097612724868245929297} a^{13} + \frac{76660682243419803894536957833417495624115501413808670382576127991491865751}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{12} + \frac{449836278365690696728392102481096748406728204173334491968066529365758596309}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{11} + \frac{671800158754282245484727152287287563281220706396588914342011455180922142004}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{10} - \frac{535628494842749739334191748400507950584441964874762274905299373859655290565}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{9} + \frac{442767871424873990789481831500323951427188396301899122276790621354011129442}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{8} - \frac{750930892014182085533636451104167116728510447761524606772004402838857767714}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{7} - \frac{59590074615494535596102566105877307145047113090474239512183090305790784757}{633147942655589469488406068178783059601579191922833974097612724868245929297} a^{6} - \frac{102457885373271865052707472467368668418202013824802275074885949905470202532}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{5} - \frac{7096684068147033899031369357222814448737410087182173614309832758860882021}{21342065482772678746800204545352237964098175008634853059470091849491435819} a^{4} + \frac{313232143607356230665205232580157883679789765145303423360651888958738057074}{633147942655589469488406068178783059601579191922833974097612724868245929297} a^{3} + \frac{779807272336458409883741269132440379168296213836124357879729113136257234684}{1899443827966768408465218204536349178804737575768501922292838174604737787891} a^{2} + \frac{183299945595106096752003824620381472071481285629802025451629028995152142638}{633147942655589469488406068178783059601579191922833974097612724868245929297} a - \frac{175067257971016611300779554870679265332942888452566470614121917613218450897}{1899443827966768408465218204536349178804737575768501922292838174604737787891}$
Class group and class number
$C_{2}\times C_{22}$, which has order $44$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 289210628.932 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 800 |
| The 44 conjugacy class representatives for t20n168 |
| Character table for t20n168 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.54025.1, 10.2.15138753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2161 | Data not computed | ||||||