Normalized defining polynomial
\( x^{20} - 5 x^{19} + 12 x^{18} - 20 x^{17} + 28 x^{16} - 35 x^{15} + 34 x^{14} - 25 x^{13} + 30 x^{12} - 70 x^{11} + 119 x^{10} - 140 x^{9} + 208 x^{8} - 325 x^{7} + 292 x^{6} - 85 x^{5} - 14 x^{4} - 70 x^{3} + 40 x^{2} + 25 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(107192366147491455078125=5^{15}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{10} + \frac{2}{5} a^{8} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{11} + \frac{2}{5} a^{9} - \frac{1}{2} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{15} + \frac{2}{5} a^{5} - \frac{1}{2}$, $\frac{1}{30} a^{16} - \frac{1}{30} a^{15} - \frac{1}{30} a^{14} - \frac{1}{30} a^{12} - \frac{1}{30} a^{11} + \frac{1}{15} a^{10} - \frac{11}{30} a^{9} - \frac{1}{10} a^{8} + \frac{2}{15} a^{7} + \frac{11}{30} a^{6} - \frac{1}{6} a^{5} + \frac{4}{15} a^{4} - \frac{1}{30} a^{3} - \frac{7}{30} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{30} a^{17} + \frac{1}{30} a^{15} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} + \frac{1}{30} a^{12} + \frac{1}{30} a^{11} - \frac{1}{10} a^{10} + \frac{1}{30} a^{9} + \frac{7}{30} a^{8} - \frac{1}{2} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{13}{30} a^{4} + \frac{7}{30} a^{3} - \frac{7}{15} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{24630} a^{18} - \frac{193}{24630} a^{17} + \frac{42}{4105} a^{16} + \frac{601}{12315} a^{15} + \frac{283}{24630} a^{14} - \frac{296}{12315} a^{13} - \frac{337}{12315} a^{12} - \frac{377}{8210} a^{11} + \frac{553}{12315} a^{10} - \frac{638}{12315} a^{9} - \frac{311}{4926} a^{8} - \frac{2639}{12315} a^{7} - \frac{4378}{12315} a^{6} - \frac{1551}{8210} a^{5} + \frac{1904}{12315} a^{4} + \frac{11911}{24630} a^{3} - \frac{365}{2463} a^{2} - \frac{1120}{2463} a - \frac{898}{2463}$, $\frac{1}{872369970} a^{19} + \frac{1493}{290789990} a^{18} + \frac{4445722}{436184985} a^{17} + \frac{10215293}{872369970} a^{16} + \frac{11735503}{290789990} a^{15} + \frac{2135893}{290789990} a^{14} + \frac{1380739}{290789990} a^{13} - \frac{40966961}{872369970} a^{12} + \frac{37482143}{872369970} a^{11} - \frac{55598717}{872369970} a^{10} + \frac{318335257}{872369970} a^{9} - \frac{243523661}{872369970} a^{8} + \frac{19500183}{290789990} a^{7} - \frac{56383447}{174473994} a^{6} - \frac{426359111}{872369970} a^{5} + \frac{73849522}{436184985} a^{4} - \frac{93051917}{436184985} a^{3} - \frac{8050017}{290789990} a^{2} - \frac{38038235}{87236997} a - \frac{27212191}{87236997}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8920766}{436184985} a^{19} + \frac{9795325}{87236997} a^{18} - \frac{126177334}{436184985} a^{17} + \frac{226700252}{436184985} a^{16} - \frac{111202304}{145394995} a^{15} + \frac{143515338}{145394995} a^{14} - \frac{453004468}{436184985} a^{13} + \frac{377269298}{436184985} a^{12} - \frac{78661150}{87236997} a^{11} + \frac{151215460}{87236997} a^{10} - \frac{1345027934}{436184985} a^{9} + \frac{343015658}{87236997} a^{8} - \frac{2459019056}{436184985} a^{7} + \frac{1245134046}{145394995} a^{6} - \frac{3894800978}{436184985} a^{5} + \frac{714388962}{145394995} a^{4} - \frac{151277444}{145394995} a^{3} + \frac{532664932}{436184985} a^{2} - \frac{104478484}{87236997} a + \frac{31399886}{87236997} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9032.09324455 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.171125.1, 10.2.146418828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |