Normalized defining polynomial
\( x^{20} - x^{19} + 127 x^{18} - 255 x^{17} + 6998 x^{16} - 18838 x^{15} + 283662 x^{14} - 1081006 x^{13} + 10909277 x^{12} - 46507613 x^{11} + 298062451 x^{10} - 1060770227 x^{9} + 4604716892 x^{8} - 12300643612 x^{7} + 39306798768 x^{6} - 83554994512 x^{5} + 235967317824 x^{4} - 468112596032 x^{3} + 1273319969280 x^{2} - 1703567371264 x + 3630610259968 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(107037598360768458712497472964188759976745670736889=3^{10}\cdot 241^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $317.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(723=3\cdot 241\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{723}(1,·)$, $\chi_{723}(580,·)$, $\chi_{723}(391,·)$, $\chi_{723}(328,·)$, $\chi_{723}(266,·)$, $\chi_{723}(205,·)$, $\chi_{723}(659,·)$, $\chi_{723}(277,·)$, $\chi_{723}(281,·)$, $\chi_{723}(154,·)$, $\chi_{723}(91,·)$, $\chi_{723}(476,·)$, $\chi_{723}(481,·)$, $\chi_{723}(347,·)$, $\chi_{723}(625,·)$, $\chi_{723}(488,·)$, $\chi_{723}(617,·)$, $\chi_{723}(683,·)$, $\chi_{723}(305,·)$, $\chi_{723}(698,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} + \frac{3}{128} a^{7} - \frac{3}{256} a^{6} + \frac{15}{256} a^{5} - \frac{3}{128} a^{4} + \frac{3}{64} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{11} - \frac{1}{256} a^{9} - \frac{5}{256} a^{7} - \frac{7}{256} a^{5} + \frac{3}{64} a^{3}$, $\frac{1}{1024} a^{12} - \frac{1}{512} a^{11} + \frac{1}{1024} a^{10} - \frac{1}{512} a^{9} - \frac{1}{1024} a^{8} - \frac{15}{512} a^{7} - \frac{5}{1024} a^{6} - \frac{27}{512} a^{5} + \frac{1}{256} a^{4} - \frac{5}{128} a^{3} + \frac{1}{8} a$, $\frac{1}{4096} a^{13} + \frac{1}{4096} a^{12} - \frac{5}{4096} a^{11} - \frac{7}{4096} a^{10} + \frac{1}{4096} a^{9} + \frac{15}{4096} a^{8} + \frac{49}{4096} a^{7} + \frac{51}{4096} a^{6} + \frac{53}{2048} a^{5} + \frac{17}{1024} a^{4} - \frac{67}{512} a^{3} + \frac{7}{32} a^{2} + \frac{3}{32} a - \frac{1}{4}$, $\frac{1}{8192} a^{14} - \frac{1}{8192} a^{13} - \frac{3}{8192} a^{12} - \frac{5}{8192} a^{11} - \frac{13}{8192} a^{10} - \frac{27}{8192} a^{9} + \frac{15}{8192} a^{8} - \frac{231}{8192} a^{7} - \frac{11}{512} a^{6} + \frac{47}{1024} a^{5} - \frac{13}{512} a^{4} + \frac{9}{512} a^{3} + \frac{3}{64} a^{2} + \frac{7}{32} a - \frac{1}{4}$, $\frac{1}{16384} a^{15} - \frac{1}{4096} a^{12} - \frac{3}{8192} a^{11} - \frac{1}{4096} a^{10} - \frac{5}{2048} a^{9} - \frac{7}{4096} a^{8} + \frac{141}{16384} a^{7} + \frac{117}{4096} a^{6} + \frac{23}{1024} a^{5} + \frac{61}{1024} a^{4} + \frac{147}{1024} a^{3} - \frac{27}{128} a^{2} - \frac{11}{64} a + \frac{1}{8}$, $\frac{1}{32768} a^{16} - \frac{1}{8192} a^{13} + \frac{5}{16384} a^{12} + \frac{7}{8192} a^{11} + \frac{5}{4096} a^{10} - \frac{15}{8192} a^{9} - \frac{3}{32768} a^{8} - \frac{51}{8192} a^{7} + \frac{27}{1024} a^{6} + \frac{47}{2048} a^{5} + \frac{55}{2048} a^{4} - \frac{1}{64} a^{3} + \frac{25}{128} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1048576} a^{17} - \frac{7}{1048576} a^{16} - \frac{5}{524288} a^{15} + \frac{5}{262144} a^{14} + \frac{31}{524288} a^{13} + \frac{195}{524288} a^{12} + \frac{207}{131072} a^{11} + \frac{411}{262144} a^{10} - \frac{1895}{1048576} a^{9} + \frac{2553}{1048576} a^{8} + \frac{12509}{524288} a^{7} + \frac{719}{131072} a^{6} - \frac{657}{32768} a^{5} + \frac{3257}{65536} a^{4} + \frac{6681}{32768} a^{3} - \frac{153}{1024} a^{2} + \frac{343}{2048} a + \frac{87}{256}$, $\frac{1}{2097152} a^{18} + \frac{5}{2097152} a^{16} - \frac{25}{1048576} a^{15} - \frac{27}{1048576} a^{14} - \frac{25}{262144} a^{13} + \frac{337}{1048576} a^{12} - \frac{787}{524288} a^{11} + \frac{2189}{2097152} a^{10} + \frac{965}{262144} a^{9} + \frac{3017}{2097152} a^{8} - \frac{5817}{1048576} a^{7} - \frac{5403}{262144} a^{6} - \frac{1397}{131072} a^{5} + \frac{1281}{131072} a^{4} - \frac{13809}{65536} a^{3} + \frac{537}{4096} a^{2} - \frac{1383}{4096} a - \frac{31}{512}$, $\frac{1}{255807369130130041412154781350209826498582127104226495698660340269056} a^{19} + \frac{1540204541979208131545891831434822666311587041861052096185373}{7993980285316563794129836917194057078080691472007077990583135633408} a^{18} - \frac{66142912283065183740913001547133301593824076427811896068194837}{255807369130130041412154781350209826498582127104226495698660340269056} a^{17} + \frac{703878205784115643494655574383223077510129841704496827156503033}{63951842282532510353038695337552456624645531776056623924665085067264} a^{16} - \frac{3453988026816963808037125305773242461029262387974540003064340473}{127903684565065020706077390675104913249291063552113247849330170134528} a^{15} + \frac{786144297911273717733070952330915061693455786985220681198209959}{15987960570633127588259673834388114156161382944014155981166271266816} a^{14} + \frac{6036732817540151381187724078098991153328526955436502114921561771}{127903684565065020706077390675104913249291063552113247849330170134528} a^{13} + \frac{6049850772552377724349439926834649305834853577067427415325199835}{31975921141266255176519347668776228312322765888028311962332542533632} a^{12} + \frac{341012263798313570507716658603938741128191280911615123811284189149}{255807369130130041412154781350209826498582127104226495698660340269056} a^{11} - \frac{2668870321205425804716097921780385382461104443458762309994930155}{15987960570633127588259673834388114156161382944014155981166271266816} a^{10} - \frac{964344245916180695663422468332453417462009344268527702748334307009}{255807369130130041412154781350209826498582127104226495698660340269056} a^{9} - \frac{87905141206596398312002376907045729145090097713007715688921923511}{63951842282532510353038695337552456624645531776056623924665085067264} a^{8} + \frac{1007385021063645651445114872315650849828272485299683398683146564705}{63951842282532510353038695337552456624645531776056623924665085067264} a^{7} - \frac{37585552635487048399363644659353462370004832356202567124995597129}{1998495071329140948532459229298514269520172868001769497645783908352} a^{6} + \frac{472414463260585654480528476433879102187138487031636661367739080469}{15987960570633127588259673834388114156161382944014155981166271266816} a^{5} + \frac{5816635891197667080656376795709127387899339994133486390098038093}{3996990142658281897064918458597028539040345736003538995291567816704} a^{4} + \frac{286202746399271561667350750058324979380840795929190026864980617555}{3996990142658281897064918458597028539040345736003538995291567816704} a^{3} + \frac{115823718192556811591359165522604764894914604597279264977525683405}{499623767832285237133114807324628567380043217000442374411445977088} a^{2} - \frac{11989431466287997367025709020396953950403614969274718776848925495}{249811883916142618566557403662314283690021608500221187205722988544} a + \frac{13386605376100740798529042978578861154614050231730007548675075781}{31226485489517827320819675457789285461252701062527648400715373568}$
Class group and class number
$C_{2}\times C_{2098936922}$, which has order $4197873844$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7201319699389.811 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{241}) \), 4.0.125977689.1, 5.5.3373402561.1, 10.10.2742542606093287451761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 241 | Data not computed | ||||||