Normalized defining polynomial
\( x^{20} + 560 x^{18} + 88200 x^{16} + 4973500 x^{14} + 131334700 x^{12} + 1775155340 x^{10} + 12356086225 x^{8} + 42000693000 x^{6} + 64854011250 x^{4} + 40353607000 x^{2} + 7061881225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10675123826048640000000000000000000000000000000000=2^{40}\cdot 3^{10}\cdot 5^{34}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4200=2^{3}\cdot 3\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4200}(1,·)$, $\chi_{4200}(3779,·)$, $\chi_{4200}(71,·)$, $\chi_{4200}(841,·)$, $\chi_{4200}(911,·)$, $\chi_{4200}(1681,·)$, $\chi_{4200}(1751,·)$, $\chi_{4200}(2521,·)$, $\chi_{4200}(349,·)$, $\chi_{4200}(2591,·)$, $\chi_{4200}(3361,·)$, $\chi_{4200}(419,·)$, $\chi_{4200}(1189,·)$, $\chi_{4200}(3431,·)$, $\chi_{4200}(1259,·)$, $\chi_{4200}(2029,·)$, $\chi_{4200}(2099,·)$, $\chi_{4200}(2869,·)$, $\chi_{4200}(2939,·)$, $\chi_{4200}(3709,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{84035} a^{10}$, $\frac{1}{84035} a^{11}$, $\frac{1}{4117715} a^{12} - \frac{2}{2401} a^{6} + \frac{3}{7}$, $\frac{1}{4117715} a^{13} - \frac{2}{2401} a^{7} + \frac{3}{7} a$, $\frac{1}{28824005} a^{14} - \frac{2}{16807} a^{8} + \frac{3}{49} a^{2}$, $\frac{1}{28824005} a^{15} - \frac{2}{16807} a^{9} + \frac{3}{49} a^{3}$, $\frac{1}{1412376245} a^{16} - \frac{2}{201768035} a^{14} + \frac{2}{28824005} a^{12} - \frac{17}{4117715} a^{10} - \frac{3}{117649} a^{8} + \frac{3}{16807} a^{6} - \frac{11}{2401} a^{4} + \frac{22}{343} a^{2} - \frac{22}{49}$, $\frac{1}{1412376245} a^{17} - \frac{2}{201768035} a^{15} + \frac{2}{28824005} a^{13} - \frac{17}{4117715} a^{11} - \frac{3}{117649} a^{9} + \frac{3}{16807} a^{7} - \frac{11}{2401} a^{5} + \frac{22}{343} a^{3} - \frac{22}{49} a$, $\frac{1}{13307626001886677965} a^{18} - \frac{148902326}{1901089428840953995} a^{16} + \frac{85596927}{271584204120136285} a^{14} + \frac{2505305169}{38797743445733755} a^{12} - \frac{25812550767}{5542534777961965} a^{10} - \frac{14201857592}{158358136513199} a^{8} - \frac{24515505233}{22622590930457} a^{6} - \frac{16043783557}{3231798704351} a^{4} - \frac{22099821665}{461685529193} a^{2} - \frac{23152528759}{65955075599}$, $\frac{1}{13307626001886677965} a^{19} - \frac{148902326}{1901089428840953995} a^{17} + \frac{85596927}{271584204120136285} a^{15} + \frac{2505305169}{38797743445733755} a^{13} - \frac{25812550767}{5542534777961965} a^{11} - \frac{14201857592}{158358136513199} a^{9} - \frac{24515505233}{22622590930457} a^{7} - \frac{16043783557}{3231798704351} a^{5} - \frac{22099821665}{461685529193} a^{3} - \frac{23152528759}{65955075599} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{44}\times C_{30844}$, which has order $347426816$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27849361.142223846 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{3}, \sqrt{-70})\), 5.5.390625.1, 10.0.102102525000000000000000.1, 10.10.37968750000000000.1, 10.0.420175000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |