Normalized defining polynomial
\( x^{20} + 20 x^{18} + 2460 x^{16} + 147330 x^{14} + 6250920 x^{12} + 216347538 x^{10} + 5869934205 x^{8} + 112358158740 x^{6} + 1412705580870 x^{4} + 10539698817980 x^{2} + 36382599176401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10675123826048640000000000000000000000000000000000=2^{40}\cdot 3^{10}\cdot 5^{34}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4200=2^{3}\cdot 3\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4200}(1,·)$, $\chi_{4200}(3779,·)$, $\chi_{4200}(1861,·)$, $\chi_{4200}(2759,·)$, $\chi_{4200}(841,·)$, $\chi_{4200}(2701,·)$, $\chi_{4200}(3599,·)$, $\chi_{4200}(1681,·)$, $\chi_{4200}(3541,·)$, $\chi_{4200}(2521,·)$, $\chi_{4200}(3361,·)$, $\chi_{4200}(419,·)$, $\chi_{4200}(1259,·)$, $\chi_{4200}(239,·)$, $\chi_{4200}(2099,·)$, $\chi_{4200}(181,·)$, $\chi_{4200}(1079,·)$, $\chi_{4200}(2939,·)$, $\chi_{4200}(1021,·)$, $\chi_{4200}(1919,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} - \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{18} a^{10} + \frac{1}{9} a^{6} - \frac{1}{18} a^{4} + \frac{7}{18}$, $\frac{1}{18} a^{11} + \frac{1}{9} a^{7} - \frac{1}{18} a^{5} + \frac{7}{18} a$, $\frac{1}{378} a^{12} + \frac{61}{378} a^{6} - \frac{1}{2} a^{2} - \frac{31}{189}$, $\frac{1}{378} a^{13} + \frac{61}{378} a^{7} - \frac{1}{2} a^{3} - \frac{31}{189} a$, $\frac{1}{2646} a^{14} - \frac{1}{1323} a^{12} - \frac{1}{126} a^{10} + \frac{61}{2646} a^{8} - \frac{208}{1323} a^{6} + \frac{8}{63} a^{4} + \frac{410}{1323} a^{2} - \frac{401}{2646}$, $\frac{1}{5292} a^{15} - \frac{1}{2646} a^{13} - \frac{1}{756} a^{12} + \frac{1}{42} a^{11} - \frac{1}{36} a^{10} + \frac{61}{5292} a^{9} - \frac{1}{18} a^{8} - \frac{61}{2646} a^{7} - \frac{61}{756} a^{6} - \frac{11}{84} a^{5} - \frac{5}{36} a^{4} + \frac{646}{1323} a^{3} + \frac{5}{36} a^{2} - \frac{127}{2646} a + \frac{125}{756}$, $\frac{1}{111132} a^{16} + \frac{5}{55566} a^{14} - \frac{1}{756} a^{13} - \frac{20}{27783} a^{12} - \frac{1}{36} a^{11} - \frac{2837}{111132} a^{10} - \frac{1}{18} a^{9} + \frac{2069}{55566} a^{8} - \frac{61}{756} a^{7} - \frac{7967}{111132} a^{6} - \frac{5}{36} a^{5} + \frac{1985}{55566} a^{4} + \frac{5}{36} a^{3} - \frac{8408}{27783} a^{2} + \frac{125}{756} a + \frac{13379}{55566}$, $\frac{1}{111132} a^{17} + \frac{5}{55566} a^{15} - \frac{1}{5292} a^{14} - \frac{20}{27783} a^{13} - \frac{5}{5292} a^{12} - \frac{2837}{111132} a^{11} - \frac{1}{42} a^{10} + \frac{2069}{55566} a^{9} - \frac{61}{5292} a^{8} - \frac{7967}{111132} a^{7} - \frac{305}{5292} a^{6} + \frac{1985}{55566} a^{5} + \frac{11}{84} a^{4} - \frac{8408}{27783} a^{3} + \frac{1385}{5292} a^{2} + \frac{13379}{55566} a + \frac{172}{1323}$, $\frac{1}{15542397477957632445733898364353462750724} a^{18} + \frac{12562276414547444732189679204933865}{7771198738978816222866949182176731375362} a^{16} + \frac{714940409071156653189645702980340941}{3885599369489408111433474591088365687681} a^{14} - \frac{1}{756} a^{13} + \frac{4279125915177259543540314673463200868}{3885599369489408111433474591088365687681} a^{12} - \frac{296596858184349781223309416524551891863}{15542397477957632445733898364353462750724} a^{10} + \frac{522172289420421171536352894391078598591}{15542397477957632445733898364353462750724} a^{8} - \frac{61}{756} a^{7} + \frac{2303133997193645967456224293290470079647}{15542397477957632445733898364353462750724} a^{6} + \frac{2049853365290253885309449880653803083107}{15542397477957632445733898364353462750724} a^{4} - \frac{1}{4} a^{3} - \frac{5481778782867424382168031204304369625299}{15542397477957632445733898364353462750724} a^{2} + \frac{31}{378} a - \frac{1033021233829272500757335604080669767331}{15542397477957632445733898364353462750724}$, $\frac{1}{93748617565147369428545282420208852266354272476} a^{19} + \frac{25741216807705003949525126651665320004657}{46874308782573684714272641210104426133177136238} a^{17} + \frac{1386706978292174946362630298387412866705599}{23437154391286842357136320605052213066588568119} a^{15} - \frac{1}{5292} a^{14} + \frac{13605165095990723500561392703239409653493607}{23437154391286842357136320605052213066588568119} a^{13} + \frac{1}{2646} a^{12} - \frac{1989310095602272569497893298348911690119168697}{93748617565147369428545282420208852266354272476} a^{11} - \frac{1}{42} a^{10} - \frac{4028552823129189225770483833079064538738381093}{93748617565147369428545282420208852266354272476} a^{9} - \frac{61}{5292} a^{8} - \frac{9687183749615675992077353164100164035475491397}{93748617565147369428545282420208852266354272476} a^{7} + \frac{61}{2646} a^{6} - \frac{3934690281291049316935765321211838601601169727}{93748617565147369428545282420208852266354272476} a^{5} + \frac{11}{84} a^{4} + \frac{747740727687982750819516927437885108287654957}{93748617565147369428545282420208852266354272476} a^{3} - \frac{646}{1323} a^{2} + \frac{6457888763284271965600672780143974106872182903}{93748617565147369428545282420208852266354272476} a + \frac{127}{2646}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{308440}$, which has order $315842560$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 180801817.57689384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-14}, \sqrt{15})\), 5.5.390625.1, 10.0.102102525000000000000000.1, 10.0.84035000000000000000.3, 10.10.189843750000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |