Normalized defining polynomial
\( x^{20} + 40 x^{18} - 20 x^{17} + 1805 x^{16} - 44 x^{15} + 64390 x^{14} + 29080 x^{13} + 1829830 x^{12} + 1333680 x^{11} + 39756432 x^{10} + 27516620 x^{9} + 654022215 x^{8} + 361124040 x^{7} + 7909442290 x^{6} + 3111251244 x^{5} + 66433466785 x^{4} + 18422918540 x^{3} + 353939485660 x^{2} + 67569922460 x + 907898452801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10675123826048640000000000000000000000000000000000=2^{40}\cdot 3^{10}\cdot 5^{34}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4200=2^{3}\cdot 3\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4200}(1,·)$, $\chi_{4200}(1091,·)$, $\chi_{4200}(839,·)$, $\chi_{4200}(841,·)$, $\chi_{4200}(1931,·)$, $\chi_{4200}(589,·)$, $\chi_{4200}(1679,·)$, $\chi_{4200}(1681,·)$, $\chi_{4200}(2771,·)$, $\chi_{4200}(1429,·)$, $\chi_{4200}(2519,·)$, $\chi_{4200}(2521,·)$, $\chi_{4200}(3611,·)$, $\chi_{4200}(2269,·)$, $\chi_{4200}(3359,·)$, $\chi_{4200}(3361,·)$, $\chi_{4200}(3109,·)$, $\chi_{4200}(4199,·)$, $\chi_{4200}(3949,·)$, $\chi_{4200}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{25} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{3}{25} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{25}$, $\frac{1}{25} a^{11} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{3}{25} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{25} a$, $\frac{1}{25} a^{12} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{3}{25} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{25} a^{2} - \frac{1}{5}$, $\frac{1}{25} a^{13} - \frac{2}{5} a^{9} + \frac{3}{25} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{25} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{14} + \frac{3}{25} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{25} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{325} a^{15} - \frac{2}{325} a^{13} - \frac{2}{325} a^{12} - \frac{6}{325} a^{11} + \frac{1}{65} a^{10} - \frac{2}{65} a^{9} - \frac{41}{325} a^{8} - \frac{106}{325} a^{7} + \frac{157}{325} a^{6} - \frac{16}{65} a^{5} - \frac{29}{65} a^{4} + \frac{122}{325} a^{3} - \frac{38}{325} a^{2} + \frac{96}{325} a + \frac{128}{325}$, $\frac{1}{2275} a^{16} + \frac{2}{2275} a^{15} + \frac{37}{2275} a^{14} - \frac{9}{455} a^{13} + \frac{3}{2275} a^{12} + \frac{19}{2275} a^{11} + \frac{1}{175} a^{10} + \frac{836}{2275} a^{9} - \frac{191}{455} a^{8} - \frac{731}{2275} a^{7} - \frac{51}{175} a^{6} + \frac{839}{2275} a^{5} - \frac{141}{325} a^{4} - \frac{172}{455} a^{3} + \frac{131}{325} a^{2} + \frac{684}{2275} a + \frac{828}{2275}$, $\frac{1}{2275} a^{17} - \frac{2}{2275} a^{15} - \frac{4}{325} a^{14} - \frac{19}{2275} a^{13} - \frac{8}{2275} a^{12} + \frac{3}{2275} a^{11} - \frac{2}{2275} a^{10} - \frac{639}{2275} a^{9} + \frac{703}{2275} a^{8} - \frac{769}{2275} a^{7} - \frac{691}{2275} a^{6} - \frac{411}{2275} a^{5} + \frac{638}{2275} a^{4} - \frac{996}{2275} a^{3} - \frac{639}{2275} a^{2} - \frac{41}{175} a + \frac{32}{175}$, $\frac{1}{12012834121574658319675} a^{18} - \frac{243036940970300089}{2402566824314931663935} a^{17} - \frac{391826149302077796}{2402566824314931663935} a^{16} + \frac{10474512615087585926}{12012834121574658319675} a^{15} + \frac{195627558719335255294}{12012834121574658319675} a^{14} + \frac{29181629784843935613}{1716119160224951188525} a^{13} - \frac{25836855903838576041}{12012834121574658319675} a^{12} - \frac{8113192765484754331}{2402566824314931663935} a^{11} - \frac{87349575829241901079}{12012834121574658319675} a^{10} - \frac{3027985771002380616643}{12012834121574658319675} a^{9} + \frac{1288547629816011849483}{12012834121574658319675} a^{8} + \frac{287271402203034524679}{924064163198050639975} a^{7} - \frac{131324997927332992357}{343223832044990237705} a^{6} + \frac{2948996401740982233023}{12012834121574658319675} a^{5} + \frac{4814473912474555821246}{12012834121574658319675} a^{4} + \frac{4335531581819013554252}{12012834121574658319675} a^{3} - \frac{1754827326932392813194}{12012834121574658319675} a^{2} + \frac{207735738053378138286}{2402566824314931663935} a - \frac{5210224770746480556}{279368235385457170225}$, $\frac{1}{1488312669256819431126574919108207676960915314313979075} a^{19} + \frac{38742154902092951159231366082308}{1488312669256819431126574919108207676960915314313979075} a^{18} - \frac{148312100179108437100677772199139473850327723017742}{1488312669256819431126574919108207676960915314313979075} a^{17} - \frac{143802901160480379898164904258308464078376076130981}{1488312669256819431126574919108207676960915314313979075} a^{16} - \frac{2135945131257923929645071761648491133028960266238119}{1488312669256819431126574919108207676960915314313979075} a^{15} - \frac{1549662374624538241475928296257450444055232919928728}{212616095608117061589510702729743953851559330616282725} a^{14} - \frac{11791541954325472077259904382595949965611818924988572}{1488312669256819431126574919108207676960915314313979075} a^{13} - \frac{303115240227966854783370124471550891918443178615118}{114485589942832263932813455316015975150839639562613775} a^{12} + \frac{16105348193207290511324671664395606294577100260116358}{1488312669256819431126574919108207676960915314313979075} a^{11} + \frac{17204442253462348735133739572449762961430480847425883}{1488312669256819431126574919108207676960915314313979075} a^{10} - \frac{391493249689887272238631182350573017177092414304294988}{1488312669256819431126574919108207676960915314313979075} a^{9} + \frac{522209177556991141766501902572808428229028420629832954}{1488312669256819431126574919108207676960915314313979075} a^{8} + \frac{43669563048947455466657359427981299216718527192313134}{212616095608117061589510702729743953851559330616282725} a^{7} - \frac{473945600133738145776244795216108651533273450908854281}{1488312669256819431126574919108207676960915314313979075} a^{6} + \frac{410394650939773266970744282180336261622422977193698799}{1488312669256819431126574919108207676960915314313979075} a^{5} + \frac{619374219172831705100701956182436747123660471465481819}{1488312669256819431126574919108207676960915314313979075} a^{4} + \frac{62207263603028904377818296464001298228452412181687251}{1488312669256819431126574919108207676960915314313979075} a^{3} - \frac{389497020534768977523422735329706902325437497699582547}{1488312669256819431126574919108207676960915314313979075} a^{2} - \frac{525729258134749290503455870064222258478985565912039446}{1488312669256819431126574919108207676960915314313979075} a - \frac{296988605762840540351564878029754625262842714283}{899829001452132219944180556233971491425860002185}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{4}\times C_{4}\times C_{362084}$, which has order $741548032$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{10}, \sqrt{-42})\), 5.5.390625.1, 10.0.20420505000000000000000.1, 10.10.25000000000000000.1, 10.0.3190703906250000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |