Normalized defining polynomial
\( x^{20} + 305 x^{16} - 8 x^{15} + 7400 x^{13} + 12310 x^{12} + 880 x^{11} - 351784 x^{10} - 629200 x^{9} - 46190 x^{8} - 840 x^{7} + 86410940 x^{6} - 1433680 x^{5} + 11025 x^{4} + 5598132760 x^{3} + 3006968580 x^{2} + 224116200 x + 103753782505 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10675123826048640000000000000000000000=2^{28}\cdot 3^{10}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{19} + \frac{518360102597541164341827170108931898685363112355964981283550806409880406840585492192139464836983}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{18} - \frac{393358991695716204023581584445956334408197985719382726474465430439485743123242660426127652983793}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{17} - \frac{1432836106229107209351688020708886551229865491533792984422290048493015688295863574683509212509767}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{16} - \frac{495852740041193003375903511859687383203640924714430778309640713273603899815768461911772329876263}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{15} + \frac{1580352601666305203665205049999848569125636025907042883190560977104562654156481376247684892083133}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{14} - \frac{3723806306537965582349737139014452751136048010416114272664364462425593855687530403951043772006467}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{13} - \frac{1066527742351031962232399816197282877821242005756732492203007973455644998463697621883361608690749}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{12} + \frac{3544788694112110796217752321743123276827588565801122560754969572561634877723430531790301993708719}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{11} - \frac{3908278407793156062089670076088776958705303768548650020898187168631336996324043071453285930772775}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{10} - \frac{2780164373896529910941550075270982715718738140118731677707915788640261757839523879030989787563349}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{9} + \frac{467442694726328812639791816756374006619077743779247432009098617213286076507156444728584344782775}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{8} + \frac{9828342324912774826680025688285995954708693196522696134135188809076611083496382777198530104798977}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{7} - \frac{6655596460864565988806601403308417056460627894306518880559499265460032267979301297480066792480115}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{6} + \frac{588823399059459989021152818586097151926909587268119864050041587452184100571905910545530887289715}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{5} - \frac{9639553762064524386133833621597415103839502622799593742770485489110674065905738620929425081164455}{21200852861117642992569062066762596755074708604609478449269393347440699366113563364697894326958844} a^{4} + \frac{3093445528642483140403814905425979358932405843814153993267854899556926582775485415879416422851153}{10600426430558821496284531033381298377537354302304739224634696673720349683056781682348947163479422} a^{3} + \frac{1652428754721407776588972913764690516344580283055312022267709370385905513517603223170755107126759}{10600426430558821496284531033381298377537354302304739224634696673720349683056781682348947163479422} a^{2} - \frac{4668112039024187135521993951277068853899327251695040824413961623904906645411118533768773816814563}{10600426430558821496284531033381298377537354302304739224634696673720349683056781682348947163479422} a - \frac{638023944938159894586078118365366696863115861559586435210209092367762749266803274241975800960028}{5300213215279410748142265516690649188768677151152369612317348336860174841528390841174473581739711}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-21})\), 5.1.50000.1, 10.0.3267280800000000000.1, 10.0.653456160000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |