Normalized defining polynomial
\( x^{20} + 9 x^{18} - 20 x^{17} + 75 x^{16} - 180 x^{15} + 861 x^{14} - 2865 x^{13} + 7959 x^{12} - 15010 x^{11} + 22236 x^{10} - 24435 x^{9} + 23095 x^{8} - 18390 x^{7} + 16869 x^{6} - 13500 x^{5} + 12456 x^{4} - 9315 x^{3} + 7560 x^{2} - 4050 x + 2025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1059431841229213450878936767578125=3^{16}\cdot 5^{15}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} - \frac{2}{9} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{2}{9} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{58290936474915} a^{18} + \frac{187727417788}{3886062431661} a^{17} - \frac{54141783484}{6476770719435} a^{16} - \frac{195102684121}{11658187294983} a^{15} - \frac{191151096872}{1295354143887} a^{14} + \frac{147905940569}{1295354143887} a^{13} - \frac{870831439663}{19430312158305} a^{12} - \frac{1769935774238}{3886062431661} a^{11} + \frac{1501097316643}{19430312158305} a^{10} + \frac{1026055060834}{11658187294983} a^{9} + \frac{833394487818}{2158923573145} a^{8} + \frac{52701014002}{431784714629} a^{7} + \frac{3965539948643}{11658187294983} a^{6} - \frac{1299400248271}{3886062431661} a^{5} + \frac{6430437489163}{19430312158305} a^{4} - \frac{355219420351}{1295354143887} a^{3} - \frac{702122031976}{6476770719435} a^{2} + \frac{67504460548}{431784714629} a - \frac{123477706781}{431784714629}$, $\frac{1}{74703790913683653310136085} a^{19} + \frac{28474390628}{24901263637894551103378695} a^{18} - \frac{454225020873980751915967}{24901263637894551103378695} a^{17} + \frac{32184049333819732663171}{74703790913683653310136085} a^{16} + \frac{76728164872530539855870}{553361414175434468963971} a^{15} - \frac{603872445655661675567393}{4980252727578910220675739} a^{14} - \frac{458593940725324647500303}{24901263637894551103378695} a^{13} + \frac{7925485049469919035666413}{24901263637894551103378695} a^{12} - \frac{10190041289229397549807922}{24901263637894551103378695} a^{11} + \frac{27050804198795340669159641}{74703790913683653310136085} a^{10} + \frac{603349885948185025236934}{8300421212631517034459565} a^{9} - \frac{9089953408180550993461037}{24901263637894551103378695} a^{8} - \frac{6752040681095424838908505}{14940758182736730662027217} a^{7} + \frac{380690284753612109602127}{4980252727578910220675739} a^{6} + \frac{461141644625984536426661}{8300421212631517034459565} a^{5} - \frac{8380193212394840695644583}{24901263637894551103378695} a^{4} - \frac{540961326086545366375031}{8300421212631517034459565} a^{3} + \frac{2644074980937218243113526}{8300421212631517034459565} a^{2} + \frac{127014160347978280585674}{553361414175434468963971} a - \frac{109994942765353322358522}{553361414175434468963971}$
Class group and class number
$C_{2}\times C_{68}$, which has order $136$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3556016073550269494260}{4980252727578910220675739} a^{19} + \frac{6680883908153776147006}{74703790913683653310136085} a^{18} - \frac{28843958497103237858908}{4980252727578910220675739} a^{17} + \frac{128411824032816501447181}{8300421212631517034459565} a^{16} - \frac{741220817104442143114900}{14940758182736730662027217} a^{15} + \frac{626272302684405051788158}{4980252727578910220675739} a^{14} - \frac{2945030537318227771759202}{4980252727578910220675739} a^{13} + \frac{50657238374946524890926662}{24901263637894551103378695} a^{12} - \frac{27191470947287135392428533}{4980252727578910220675739} a^{11} + \frac{82415707707200303191041706}{8300421212631517034459565} a^{10} - \frac{197778563483926553549384654}{14940758182736730662027217} a^{9} + \frac{318076426567038580328941222}{24901263637894551103378695} a^{8} - \frac{49000518039101067388324382}{4980252727578910220675739} a^{7} + \frac{106517731686079640086724750}{14940758182736730662027217} a^{6} - \frac{11886068175155009121469892}{1660084242526303406891913} a^{5} + \frac{19288116027245964094935792}{2766807070877172344819855} a^{4} - \frac{2963346511990376214878906}{553361414175434468963971} a^{3} + \frac{12921178226406221510798568}{2766807070877172344819855} a^{2} - \frac{1525998162249812542461747}{553361414175434468963971} a + \frac{933816872071413534966552}{553361414175434468963971} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6959926.34763 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times A_5$ (as 20T63):
| A non-solvable group of order 240 |
| The 20 conjugacy class representatives for $C_4\times A_5$ |
| Character table for $C_4\times A_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.10791225.1, 10.10.582252685003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.12.23 | $x^{12} + 21 x^{11} + 21 x^{10} + 63 x^{9} + 36 x^{8} + 54 x^{7} + 90 x^{6} + 81 x^{3} - 81$ | $3$ | $4$ | $12$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $73$ | 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.12.8.2 | $x^{12} - 389017 x^{3} + 369177133$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |