Normalized defining polynomial
\( x^{20} - 4 x^{18} - 6 x^{16} + 4 x^{14} + 265 x^{12} + 72 x^{10} + 1092 x^{8} - 64 x^{6} + 14528 x^{4} + 16896 x^{2} + 51200 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10473339213126553396125334765568=2^{27}\cdot 727^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{9} - \frac{3}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{12} - \frac{1}{64} a^{10} + \frac{1}{64} a^{8} - \frac{1}{16} a^{6} + \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{15} - \frac{1}{128} a^{14} + \frac{3}{256} a^{13} + \frac{1}{128} a^{12} - \frac{1}{256} a^{11} + \frac{1}{128} a^{10} - \frac{3}{256} a^{9} + \frac{7}{128} a^{8} + \frac{5}{64} a^{7} - \frac{3}{32} a^{6} + \frac{5}{64} a^{5} - \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{16} - \frac{1}{256} a^{14} + \frac{3}{256} a^{12} + \frac{1}{256} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{64} a^{6} - \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{256} a^{17} - \frac{1}{128} a^{14} - \frac{1}{128} a^{13} + \frac{1}{128} a^{12} + \frac{1}{128} a^{10} + \frac{5}{256} a^{9} + \frac{7}{128} a^{8} - \frac{3}{32} a^{7} - \frac{3}{32} a^{6} - \frac{7}{64} a^{5} - \frac{5}{32} a^{4}$, $\frac{1}{872438346752} a^{18} - \frac{162322207}{109054793344} a^{16} - \frac{3126267183}{436219173376} a^{14} - \frac{3102283139}{218109586688} a^{12} + \frac{4933726225}{872438346752} a^{10} - \frac{8927574913}{218109586688} a^{8} - \frac{1}{8} a^{7} + \frac{15726773445}{218109586688} a^{6} - \frac{1}{8} a^{5} + \frac{247285483}{7789628096} a^{4} - \frac{909408109}{3407962292} a^{2} - \frac{593357399}{1703981146}$, $\frac{1}{17448766935040} a^{19} - \frac{1}{1744876693504} a^{18} + \frac{299206189}{272636983360} a^{17} + \frac{162322207}{218109586688} a^{16} + \frac{13913544277}{8724383467520} a^{15} + \frac{3126267183}{872438346752} a^{14} + \frac{5417622591}{4362191733760} a^{13} - \frac{3713641445}{436219173376} a^{12} - \frac{5829179339}{3489753387008} a^{11} - \frac{4933726225}{1744876693504} a^{10} + \frac{120574992183}{4362191733760} a^{9} - \frac{25152048007}{436219173376} a^{8} + \frac{131597491373}{4362191733760} a^{7} + \frac{52432472395}{436219173376} a^{6} + \frac{14852838163}{155792561920} a^{5} + \frac{3647528565}{15579256192} a^{4} + \frac{19538365643}{68159245840} a^{3} - \frac{2498554183}{6815924584} a^{2} - \frac{5705300837}{34079622920} a - \frac{1110623747}{3407962292}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19885049}{872438346752} a^{18} + \frac{10380037}{109054793344} a^{16} + \frac{31456503}{436219173376} a^{14} + \frac{16289995}{218109586688} a^{12} - \frac{5295150793}{872438346752} a^{10} + \frac{71783421}{218109586688} a^{8} - \frac{8603999197}{218109586688} a^{6} + \frac{93399585}{7789628096} a^{4} - \frac{512514509}{851990573} a^{2} - \frac{446903797}{1703981146} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67262537.361 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.8456464.1, 10.0.286047133533184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.9.4 | $x^{4} + 2 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 727 | Data not computed | ||||||