Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{17} + 6 x^{16} - 24 x^{15} - 29 x^{14} + 26 x^{13} + 19 x^{12} + 33 x^{11} + 23 x^{10} - 24 x^{9} - 32 x^{8} - 43 x^{7} + 52 x^{6} + 54 x^{5} + 57 x^{4} + 12 x^{3} + 24 x^{2} - x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10326930237613180030401=3^{10}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{13} - \frac{1}{3} a^{12} - \frac{1}{2} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{15} - \frac{1}{18} a^{14} - \frac{1}{6} a^{13} + \frac{1}{18} a^{12} + \frac{1}{9} a^{11} - \frac{1}{6} a^{10} - \frac{1}{9} a^{9} - \frac{1}{2} a^{8} + \frac{1}{18} a^{7} + \frac{1}{6} a^{6} + \frac{5}{18} a^{5} + \frac{7}{18} a^{4} + \frac{1}{6} a^{3} - \frac{7}{18} a^{2} + \frac{2}{9} a + \frac{1}{18}$, $\frac{1}{18} a^{17} + \frac{1}{18} a^{15} - \frac{1}{9} a^{14} + \frac{1}{18} a^{13} - \frac{5}{18} a^{12} + \frac{2}{9} a^{11} - \frac{1}{9} a^{10} + \frac{5}{18} a^{9} - \frac{4}{9} a^{8} - \frac{7}{18} a^{7} - \frac{2}{9} a^{6} - \frac{1}{18} a^{5} - \frac{2}{9} a^{4} - \frac{7}{18} a^{3} - \frac{1}{18} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{54} a^{18} - \frac{1}{54} a^{16} - \frac{1}{54} a^{15} + \frac{1}{18} a^{14} - \frac{10}{27} a^{13} + \frac{7}{27} a^{12} - \frac{5}{18} a^{11} - \frac{5}{27} a^{10} + \frac{13}{27} a^{9} - \frac{7}{54} a^{8} - \frac{5}{18} a^{7} - \frac{13}{54} a^{6} - \frac{17}{54} a^{5} - \frac{7}{18} a^{4} - \frac{2}{27} a^{3} - \frac{5}{27} a^{2} - \frac{5}{18} a - \frac{17}{54}$, $\frac{1}{929837399216562} a^{19} - \frac{2423136176485}{464918699608281} a^{18} + \frac{9000832156121}{929837399216562} a^{17} - \frac{871487830111}{464918699608281} a^{16} - \frac{20313443307560}{464918699608281} a^{15} - \frac{56729948299625}{929837399216562} a^{14} + \frac{1485539480147}{103315266579618} a^{13} - \frac{21655996777316}{464918699608281} a^{12} - \frac{187049914568015}{464918699608281} a^{11} - \frac{319426505184359}{929837399216562} a^{10} + \frac{463242408992407}{929837399216562} a^{9} + \frac{117118392982747}{464918699608281} a^{8} + \frac{223089764428459}{464918699608281} a^{7} - \frac{940430106815}{17219211096603} a^{6} - \frac{142034519314561}{464918699608281} a^{5} - \frac{278880026568907}{929837399216562} a^{4} - \frac{395763205115135}{929837399216562} a^{3} - \frac{53329239500585}{464918699608281} a^{2} - \frac{357592090933115}{929837399216562} a - \frac{455944811078441}{929837399216562}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{263892301}{1021766778} a^{19} - \frac{512523166}{510883389} a^{18} - \frac{68770031}{510883389} a^{17} + \frac{3218511505}{1021766778} a^{16} + \frac{1976398211}{1021766778} a^{15} - \frac{3132890761}{510883389} a^{14} - \frac{1445557690}{170294463} a^{13} + \frac{3076463839}{510883389} a^{12} + \frac{6635284721}{1021766778} a^{11} + \frac{9516223105}{1021766778} a^{10} + \frac{3192926855}{510883389} a^{9} - \frac{6988428349}{1021766778} a^{8} - \frac{9422993593}{1021766778} a^{7} - \frac{4082735353}{340588926} a^{6} + \frac{13146663787}{1021766778} a^{5} + \frac{8621421553}{510883389} a^{4} + \frac{7880758943}{510883389} a^{3} + \frac{1696375360}{510883389} a^{2} + \frac{2357347160}{510883389} a + \frac{525802777}{1021766778} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1485.3179174 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-159}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{-3}, \sqrt{53})\), 5.1.25281.1 x5, 10.0.101621504799.2, 10.0.1917386883.1 x5, 10.2.33873834933.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |