Properties

Label 20.0.10288485539...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{24}\cdot 5^{13}\cdot 3469^{5}$
Root discriminant $50.19$
Ramified primes $2, 5, 3469$
Class number $752$ (GRH)
Class group $[2, 2, 188]$ (GRH)
Galois group 20T771

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![543131, -2161426, 5304891, -8447796, 9191895, -7735664, 5344064, -3136304, 1669105, -820556, 383571, -160826, 60785, -20704, 6984, -2104, 585, -126, 31, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 31*x^18 - 126*x^17 + 585*x^16 - 2104*x^15 + 6984*x^14 - 20704*x^13 + 60785*x^12 - 160826*x^11 + 383571*x^10 - 820556*x^9 + 1669105*x^8 - 3136304*x^7 + 5344064*x^6 - 7735664*x^5 + 9191895*x^4 - 8447796*x^3 + 5304891*x^2 - 2161426*x + 543131)
 
gp: K = bnfinit(x^20 - 6*x^19 + 31*x^18 - 126*x^17 + 585*x^16 - 2104*x^15 + 6984*x^14 - 20704*x^13 + 60785*x^12 - 160826*x^11 + 383571*x^10 - 820556*x^9 + 1669105*x^8 - 3136304*x^7 + 5344064*x^6 - 7735664*x^5 + 9191895*x^4 - 8447796*x^3 + 5304891*x^2 - 2161426*x + 543131, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 31 x^{18} - 126 x^{17} + 585 x^{16} - 2104 x^{15} + 6984 x^{14} - 20704 x^{13} + 60785 x^{12} - 160826 x^{11} + 383571 x^{10} - 820556 x^{9} + 1669105 x^{8} - 3136304 x^{7} + 5344064 x^{6} - 7735664 x^{5} + 9191895 x^{4} - 8447796 x^{3} + 5304891 x^{2} - 2161426 x + 543131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10288485539542801387520000000000000=2^{24}\cdot 5^{13}\cdot 3469^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 3469$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{65} a^{18} + \frac{1}{65} a^{17} + \frac{1}{65} a^{16} + \frac{2}{5} a^{15} - \frac{24}{65} a^{14} - \frac{23}{65} a^{13} + \frac{28}{65} a^{12} - \frac{27}{65} a^{11} + \frac{4}{13} a^{10} + \frac{1}{13} a^{9} - \frac{23}{65} a^{8} - \frac{17}{65} a^{7} + \frac{2}{5} a^{6} + \frac{3}{65} a^{5} + \frac{19}{65} a^{4} + \frac{21}{65} a^{3} + \frac{1}{65} a^{2} + \frac{4}{65} a + \frac{24}{65}$, $\frac{1}{25642085934428640257074518682761121215472685643754384762405} a^{19} - \frac{13353764126733628981978558898693021748895919136329405646}{5128417186885728051414903736552224243094537128750876952481} a^{18} + \frac{153762729762678800069616374540975093145841518951255526961}{5128417186885728051414903736552224243094537128750876952481} a^{17} + \frac{2278691875804345161816044848107092450772131868784946775634}{25642085934428640257074518682761121215472685643754384762405} a^{16} - \frac{8819872266164714037620704789610673063272589657300067663964}{25642085934428640257074518682761121215472685643754384762405} a^{15} + \frac{7804996575338214298064352198399191920930125888884483930664}{25642085934428640257074518682761121215472685643754384762405} a^{14} + \frac{8868949413093366742358934140514220489490064823797158015013}{25642085934428640257074518682761121215472685643754384762405} a^{13} + \frac{2835746398836585241031122631233964252372539532178021608602}{25642085934428640257074518682761121215472685643754384762405} a^{12} - \frac{7215768391106634154924464468055743321828453370875667438906}{25642085934428640257074518682761121215472685643754384762405} a^{11} + \frac{715590454146895963912811869064317626494955826616263775427}{1972468148802203096698039898673932401190206587981106520185} a^{10} - \frac{603549967095052494924144329770794241617204747828369247171}{5128417186885728051414903736552224243094537128750876952481} a^{9} + \frac{8445365068718819963226725560721814347063022513725302483089}{25642085934428640257074518682761121215472685643754384762405} a^{8} + \frac{3034315162722174137499581118279530841407149531468173526809}{25642085934428640257074518682761121215472685643754384762405} a^{7} + \frac{1808487404371344724125518066799585281191080839511372244813}{5128417186885728051414903736552224243094537128750876952481} a^{6} - \frac{348728487544551742247125693466608190588376043535657026639}{25642085934428640257074518682761121215472685643754384762405} a^{5} + \frac{492773356457236813462904523810328869759449263415773217761}{1972468148802203096698039898673932401190206587981106520185} a^{4} + \frac{532346208356099600453147180203949124090160374294802162010}{5128417186885728051414903736552224243094537128750876952481} a^{3} - \frac{5197816071608245134684903846698329834719074394530261591647}{25642085934428640257074518682761121215472685643754384762405} a^{2} - \frac{11160598085525286050897224017166173167715820905782756138296}{25642085934428640257074518682761121215472685643754384762405} a - \frac{9631440232055138462811376683977015068878876897610176825503}{25642085934428640257074518682761121215472685643754384762405}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{188}$, which has order $752$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 828338.933858 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T771:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n771 are not computed
Character table for t20n771 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.9627168800000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
3469Data not computed