Normalized defining polynomial
\( x^{20} - 5 x^{19} + 13 x^{18} - 30 x^{17} + 63 x^{16} - 110 x^{15} + 181 x^{14} - 275 x^{13} + 355 x^{12} - 445 x^{11} + 561 x^{10} - 635 x^{9} + 703 x^{8} - 775 x^{7} + 773 x^{6} - 690 x^{5} + 546 x^{4} - 370 x^{3} + 215 x^{2} - 100 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1014188554980499267578125=5^{15}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{3}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{15} - \frac{2}{5} a^{5} - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{2}{5} a^{6} - \frac{1}{2} a$, $\frac{1}{50} a^{17} - \frac{1}{25} a^{16} + \frac{1}{50} a^{15} - \frac{1}{25} a^{14} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{3}{25} a^{7} - \frac{6}{25} a^{6} + \frac{3}{25} a^{5} - \frac{6}{25} a^{4} + \frac{1}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{6950} a^{18} - \frac{19}{3475} a^{17} + \frac{104}{3475} a^{16} + \frac{127}{6950} a^{15} - \frac{193}{6950} a^{14} - \frac{43}{1390} a^{13} + \frac{21}{1390} a^{12} + \frac{31}{1390} a^{11} - \frac{117}{1390} a^{10} + \frac{133}{1390} a^{9} + \frac{1821}{6950} a^{8} + \frac{927}{6950} a^{7} - \frac{2597}{6950} a^{6} + \frac{2007}{6950} a^{5} + \frac{397}{6950} a^{4} - \frac{194}{695} a^{3} - \frac{59}{1390} a^{2} - \frac{13}{278} a + \frac{59}{139}$, $\frac{1}{1257950} a^{19} + \frac{11}{628975} a^{18} - \frac{5547}{1257950} a^{17} - \frac{16583}{1257950} a^{16} - \frac{8449}{628975} a^{15} + \frac{9039}{251590} a^{14} - \frac{6451}{251590} a^{13} + \frac{14913}{251590} a^{12} - \frac{3261}{251590} a^{11} - \frac{2161}{251590} a^{10} + \frac{164041}{1257950} a^{9} + \frac{461857}{1257950} a^{8} + \frac{132253}{1257950} a^{7} - \frac{96823}{1257950} a^{6} + \frac{361287}{1257950} a^{5} - \frac{5596}{125795} a^{4} - \frac{14231}{50318} a^{3} + \frac{44554}{125795} a^{2} - \frac{12424}{25159} a - \frac{12241}{50318}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{859753}{1257950} a^{19} + \frac{702303}{251590} a^{18} - \frac{7945187}{1257950} a^{17} + \frac{18442607}{1257950} a^{16} - \frac{37080189}{1257950} a^{15} + \frac{60154067}{1257950} a^{14} - \frac{19912729}{251590} a^{13} + \frac{28710731}{251590} a^{12} - \frac{34190167}{251590} a^{11} + \frac{44370669}{251590} a^{10} - \frac{273689903}{1257950} a^{9} + \frac{57710073}{251590} a^{8} - \frac{331948577}{1257950} a^{7} + \frac{353173137}{1257950} a^{6} - \frac{331564159}{1257950} a^{5} + \frac{139498466}{628975} a^{4} - \frac{20302194}{125795} a^{3} + \frac{12375067}{125795} a^{2} - \frac{1303214}{25159} a + \frac{454843}{25159} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53376.7417145 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.300125.1 x5, 10.2.450375078125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.300125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 7 | Data not computed | ||||||