Normalized defining polynomial
\( x^{20} - x^{19} - 29 x^{18} - 2 x^{17} + 645 x^{16} + 2578 x^{15} - 3098 x^{14} - 2268 x^{13} + 241234 x^{12} + 737381 x^{11} - 1267971 x^{10} - 7923930 x^{9} + 4621179 x^{8} + 87517488 x^{7} + 260007308 x^{6} + 686312568 x^{5} + 2775269509 x^{4} + 5939873213 x^{3} + 6102106147 x^{2} + 12852126152 x + 22061643433 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10111569723784930165426015116328899641=7^{10}\cdot 11^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{15} + \frac{2}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} - \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{3} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{15} + \frac{2}{7} a^{13} - \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{119} a^{18} - \frac{1}{119} a^{17} - \frac{4}{119} a^{16} - \frac{10}{119} a^{15} - \frac{33}{119} a^{14} + \frac{33}{119} a^{13} + \frac{4}{119} a^{12} + \frac{19}{119} a^{11} + \frac{36}{119} a^{10} - \frac{46}{119} a^{9} + \frac{41}{119} a^{8} - \frac{20}{119} a^{7} - \frac{4}{17} a^{6} + \frac{19}{119} a^{5} + \frac{23}{119} a^{4} - \frac{9}{119} a^{3} - \frac{10}{119} a^{2} + \frac{58}{119} a + \frac{46}{119}$, $\frac{1}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{19} - \frac{37519960713237090616124962930497179755637010971343265649010970970584221240020513834775619791}{91362997670018087352829412758637108441910332763190131900502208212732467994746247065974822866903} a^{18} - \frac{14908691147746152423661520868020955713367722186773591012797571977031401053370160110680503331256}{3432638341030679567684876507931651360031773930959857812833154394278377011802608996907339773427927} a^{17} - \frac{708238765158910192944144024636082900233347172014600767524115650884744155753236920109048417135440}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{16} - \frac{9716597634630961517459933817494933259498008115534903937041079101105923251119911187887183105509009}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{15} - \frac{33018425982116828063124197431300585771735357950546511162474421315641286679257620719904221447628}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{14} - \frac{2882119589689803583999696655520087827782120542676742615223879399692381544415699967487383176703901}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{13} - \frac{341432886819809965458084327396508912329551450547113328127907025837803663012273769498107994794040}{1413439316894985704340831503265974089424848089218764981754828279996978769565780175197139906705617} a^{12} - \frac{2985790802694584755163360118907953860564515975255028467943760513242837949193141181171173330161314}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{11} + \frac{7337527313398128375359415063321480362192453679405021841148079693895601067082891761942208475129217}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{10} - \frac{1697546052785028743297482767615714809449589791005522218008846209132898990749877077280221053940448}{3432638341030679567684876507931651360031773930959857812833154394278377011802608996907339773427927} a^{9} - \frac{6616637257909397170595494115816981606495552018306904259932516245976561075851147737925909609844074}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{8} + \frac{11777424200440090532208411245925115581088766354212391815072019313063722515593556180744591043827478}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{7} - \frac{6347558700485342254507138543696277894958956889848792191956353351788371438942186860822730707942933}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{6} - \frac{5373573752763421354864352624776938364328173924147189591604028130893268242952587277350405373322696}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{5} - \frac{664761524306387673142335713744432063522403249242111346518445881183069841412421485725631942179283}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489} a^{4} + \frac{175624815385868910641129489524433904866042095042067278737840098894204689167211697727097742134726}{3432638341030679567684876507931651360031773930959857812833154394278377011802608996907339773427927} a^{3} - \frac{236311445036311394712705631476265366607539401540950929758239046127350634156201976403665667727148}{3432638341030679567684876507931651360031773930959857812833154394278377011802608996907339773427927} a^{2} + \frac{61955974720326816017726667302794757710109738112233722308409668533155271435300994132944317036001}{1413439316894985704340831503265974089424848089218764981754828279996978769565780175197139906705617} a - \frac{6033441905098433393764063013986258194111618975317894985481252558482183680318697034740118496249959}{24028468387214756973794135555521559520222417516719004689832080759948639082618262978351378413995489}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.3697001.1, 10.0.36252565459.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||