Normalized defining polynomial
\( x^{20} - 5 x^{19} + 17 x^{18} - 42 x^{17} + 108 x^{16} - 177 x^{15} + 293 x^{14} - 301 x^{13} + 475 x^{12} - 358 x^{11} + 945 x^{10} - 217 x^{9} + 1380 x^{8} - 261 x^{7} + 1006 x^{6} - 128 x^{5} + 227 x^{4} - 67 x^{3} + 8 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1008024781832337188720703125=5^{17}\cdot 6029^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{56062626132411290386294205} a^{19} - \frac{2157755387512456424189033}{56062626132411290386294205} a^{18} + \frac{4987824241110194969217306}{56062626132411290386294205} a^{17} - \frac{2386072664974141848749228}{56062626132411290386294205} a^{16} + \frac{1664638921008172630779226}{56062626132411290386294205} a^{15} - \frac{1095559602753155420812428}{11212525226482258077258841} a^{14} + \frac{7707083879458893131381532}{56062626132411290386294205} a^{13} + \frac{21365515963991383223129528}{56062626132411290386294205} a^{12} - \frac{2675144385957318318519734}{56062626132411290386294205} a^{11} + \frac{24927563556468506149734698}{56062626132411290386294205} a^{10} - \frac{4118078284344545241569236}{56062626132411290386294205} a^{9} - \frac{4114551583455930590530512}{56062626132411290386294205} a^{8} + \frac{4098511311583540180080204}{56062626132411290386294205} a^{7} - \frac{1338782233734336849013491}{11212525226482258077258841} a^{6} - \frac{7097081607590415494602343}{56062626132411290386294205} a^{5} + \frac{12683062282295017570969894}{56062626132411290386294205} a^{4} + \frac{1214897637055726083821243}{11212525226482258077258841} a^{3} - \frac{12791834501189988093895793}{56062626132411290386294205} a^{2} + \frac{3871476289413192930845225}{11212525226482258077258841} a + \frac{6987099983714744162367341}{56062626132411290386294205}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7076469780059579555795616}{56062626132411290386294205} a^{19} - \frac{7393570948242118269789685}{11212525226482258077258841} a^{18} + \frac{128099567278025584365330253}{56062626132411290386294205} a^{17} - \frac{323763547733391614057864263}{56062626132411290386294205} a^{16} + \frac{829929107853981644173077533}{56062626132411290386294205} a^{15} - \frac{1422767867673938658915564979}{56062626132411290386294205} a^{14} + \frac{2351244544815771343632815599}{56062626132411290386294205} a^{13} - \frac{2599969058902110447195651486}{56062626132411290386294205} a^{12} + \frac{3848940476657224104432984928}{56062626132411290386294205} a^{11} - \frac{3326300217118276224909281277}{56062626132411290386294205} a^{10} + \frac{7277016397608970193798801407}{56062626132411290386294205} a^{9} - \frac{621760971892204484744519837}{11212525226482258077258841} a^{8} + \frac{10085952520796098846874643376}{56062626132411290386294205} a^{7} - \frac{4238684661711000131611176586}{56062626132411290386294205} a^{6} + \frac{7439697549052160064550078454}{56062626132411290386294205} a^{5} - \frac{2792381264250064278071500706}{56062626132411290386294205} a^{4} + \frac{1773465667294405773318308414}{56062626132411290386294205} a^{3} - \frac{1100936551529003795661285187}{56062626132411290386294205} a^{2} + \frac{162850912008780705965746269}{56062626132411290386294205} a + \frac{8617190728072315981589776}{56062626132411290386294205} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times S_5$ (as 20T123):
| A non-solvable group of order 480 |
| The 28 conjugacy class representatives for $C_4\times S_5$ |
| Character table for $C_4\times S_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||