Normalized defining polynomial
\( x^{20} - 2 x^{19} + 27 x^{18} - 50 x^{17} + 249 x^{16} - 570 x^{15} + 1254 x^{14} - 3934 x^{13} + 6887 x^{12} - 13648 x^{11} + 30841 x^{10} - 44850 x^{9} + 78071 x^{8} - 119082 x^{7} + 145974 x^{6} - 178652 x^{5} + 172159 x^{4} - 56358 x^{3} + 212471 x^{2} + 51356 x + 99301 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1004734915970976698000000000000000=2^{16}\cdot 5^{15}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{15} + \frac{1}{5} a^{13} - \frac{1}{10} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{8} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} + \frac{1}{5} a^{14} + \frac{1}{10} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{18} + \frac{1}{10} a^{15} + \frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{244032400950275062871096572126884993979318033951910} a^{19} - \frac{777755799596484253098988499637832088697061642011}{122016200475137531435548286063442496989659016975955} a^{18} - \frac{2452855089756135277127846513590755488970220304258}{122016200475137531435548286063442496989659016975955} a^{17} - \frac{2976013850851086688011894138685437065613298909541}{122016200475137531435548286063442496989659016975955} a^{16} - \frac{42527557711082119795678350971512760782153949098727}{244032400950275062871096572126884993979318033951910} a^{15} + \frac{3680604966848115247170700952331134394635036464858}{24403240095027506287109657212688499397931803395191} a^{14} - \frac{38031605426861737174745873717539013272760530135083}{244032400950275062871096572126884993979318033951910} a^{13} + \frac{1265192104301501616996204788051153616597175411293}{48806480190055012574219314425376998795863606790382} a^{12} - \frac{52449193152166101775454288988942795855864751804707}{244032400950275062871096572126884993979318033951910} a^{11} - \frac{11510437666856694726857148830258270682638504508628}{122016200475137531435548286063442496989659016975955} a^{10} - \frac{49003397416136736504872433610978067095630990221176}{122016200475137531435548286063442496989659016975955} a^{9} + \frac{55266847065501605995495346473005689757293607641}{728454928209776307077900215304134310386023981946} a^{8} + \frac{3411447563688232306479994228533075830963587547790}{24403240095027506287109657212688499397931803395191} a^{7} - \frac{9965379395963334952847000838623855893059892078725}{24403240095027506287109657212688499397931803395191} a^{6} - \frac{22609008381819713589377356015193463859687664432562}{122016200475137531435548286063442496989659016975955} a^{5} - \frac{3496362633083979589505603968973971342900684431679}{10610104389142394037873764005516738868666001476170} a^{4} + \frac{39559218307582611376513620457620233651561484482231}{122016200475137531435548286063442496989659016975955} a^{3} + \frac{49924024557654063363224626160447659931508111206514}{122016200475137531435548286063442496989659016975955} a^{2} + \frac{11806653230561684155119288613237648993450456067071}{244032400950275062871096572126884993979318033951910} a - \frac{55214739995747661063479166301103105890897056893843}{122016200475137531435548286063442496989659016975955}$
Class group and class number
$C_{2}\times C_{4}\times C_{36}$, which has order $288$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 828338.933858 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T94):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.433625.1, 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 3469 | Data not computed | ||||||