Normalized defining polynomial
\( x^{20} - 8 x^{19} + 42 x^{18} - 204 x^{17} + 928 x^{16} - 3530 x^{15} + 12796 x^{14} - 40207 x^{13} + 115483 x^{12} - 299394 x^{11} + 694684 x^{10} - 1456697 x^{9} + 2707188 x^{8} - 4255273 x^{7} + 5598538 x^{6} - 6354447 x^{5} + 6400086 x^{4} - 5497910 x^{3} + 3643915 x^{2} - 1608255 x + 377245 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10019151533337487082567413330078125=3^{10}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{3}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{45641496} a^{18} - \frac{320209}{11410374} a^{17} - \frac{1924259}{45641496} a^{16} - \frac{1186490}{5705187} a^{15} - \frac{53135}{22820748} a^{14} + \frac{1725451}{45641496} a^{13} - \frac{1263603}{7606916} a^{12} + \frac{1261015}{11410374} a^{11} - \frac{1896199}{45641496} a^{10} + \frac{12951415}{45641496} a^{9} - \frac{889095}{3803458} a^{8} + \frac{1467191}{15213832} a^{7} + \frac{680155}{3803458} a^{6} + \frac{8814257}{45641496} a^{5} - \frac{2473047}{15213832} a^{4} - \frac{1200571}{5705187} a^{3} - \frac{11025023}{45641496} a^{2} - \frac{1512641}{45641496} a + \frac{324119}{1201092}$, $\frac{1}{14840430911649108954252935761889122385872390244664} a^{19} - \frac{30285756206310406094055437483159891669401}{7420215455824554477126467880944561192936195122332} a^{18} - \frac{763042909918713010183895220891232814085861376663}{14840430911649108954252935761889122385872390244664} a^{17} + \frac{237692256939166588722267430415646571430914432211}{7420215455824554477126467880944561192936195122332} a^{16} + \frac{4727125752488673908459604459468465314768997365}{24489159920213051079625306537770829019591403044} a^{15} + \frac{733529157337544744062166224364096915429150154911}{14840430911649108954252935761889122385872390244664} a^{14} + \frac{176752349596944297581179017092762019223750698395}{3710107727912277238563233940472280596468097561166} a^{13} + \frac{895754740837863997009773941393493666414248352049}{3710107727912277238563233940472280596468097561166} a^{12} - \frac{242463668087747273063747481243785077316170973591}{14840430911649108954252935761889122385872390244664} a^{11} + \frac{3538286140085427528431727661591556452691465980145}{14840430911649108954252935761889122385872390244664} a^{10} - \frac{15186821000488435975282690157017326846291093349}{73467479760639153238875919613312487058774209132} a^{9} - \frac{414032142220838741902787143377911012431830453101}{4946810303883036318084311920629707461957463414888} a^{8} + \frac{648186709128534668594560001571520778625907861209}{2473405151941518159042155960314853730978731707444} a^{7} + \frac{2903014389020547024653999475517549005386456228117}{14840430911649108954252935761889122385872390244664} a^{6} - \frac{4317316897503880665906548243878490996313805846331}{14840430911649108954252935761889122385872390244664} a^{5} + \frac{2881864361165155278449632546846650465382379561285}{7420215455824554477126467880944561192936195122332} a^{4} - \frac{1203666744261374773362673795828214358141031358489}{4946810303883036318084311920629707461957463414888} a^{3} - \frac{1875072788386066514545330738911873132980938786517}{4946810303883036318084311920629707461957463414888} a^{2} - \frac{8258487960580877880261995166784830490037612055}{32544804630809449461080999477827022776035943519} a + \frac{909411406273649723755631216785335315104364934}{5138653362759386757012789391235845701479359503}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26826674.447924238 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.136125.2, 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |