Normalized defining polynomial
\( x^{20} - x^{19} + 35 x^{18} - 36 x^{17} + 500 x^{16} - 536 x^{15} + 3874 x^{14} - 4410 x^{13} + 18734 x^{12} - 23144 x^{11} + 64285 x^{10} - 88253 x^{9} + 181094 x^{8} - 254178 x^{7} + 456689 x^{6} - 492583 x^{5} + 958226 x^{4} - 411001 x^{3} + 1371042 x^{2} + 173262 x + 1197901 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10019151533337487082567413330078125=3^{10}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(165=3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{165}(128,·)$, $\chi_{165}(1,·)$, $\chi_{165}(2,·)$, $\chi_{165}(4,·)$, $\chi_{165}(136,·)$, $\chi_{165}(98,·)$, $\chi_{165}(16,·)$, $\chi_{165}(17,·)$, $\chi_{165}(83,·)$, $\chi_{165}(68,·)$, $\chi_{165}(91,·)$, $\chi_{165}(31,·)$, $\chi_{165}(32,·)$, $\chi_{165}(34,·)$, $\chi_{165}(64,·)$, $\chi_{165}(107,·)$, $\chi_{165}(49,·)$, $\chi_{165}(8,·)$, $\chi_{165}(124,·)$, $\chi_{165}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{89} a^{15} + \frac{42}{89} a^{14} - \frac{14}{89} a^{13} - \frac{44}{89} a^{12} + \frac{5}{89} a^{11} - \frac{19}{89} a^{10} + \frac{14}{89} a^{9} - \frac{34}{89} a^{8} - \frac{41}{89} a^{7} - \frac{36}{89} a^{6} - \frac{31}{89} a^{4} + \frac{7}{89} a^{3} - \frac{32}{89} a^{2} - \frac{43}{89} a - \frac{6}{89}$, $\frac{1}{184141} a^{16} - \frac{851}{184141} a^{15} + \frac{61270}{184141} a^{14} + \frac{70308}{184141} a^{13} + \frac{5388}{184141} a^{12} + \frac{53188}{184141} a^{11} + \frac{8793}{184141} a^{10} + \frac{27959}{184141} a^{9} + \frac{49990}{184141} a^{8} + \frac{33106}{184141} a^{7} - \frac{47507}{184141} a^{6} + \frac{41888}{184141} a^{5} + \frac{10068}{184141} a^{4} - \frac{5304}{184141} a^{3} - \frac{56195}{184141} a^{2} + \frac{27713}{184141} a + \frac{75935}{184141}$, $\frac{1}{184141} a^{17} - \frac{851}{184141} a^{15} - \frac{82897}{184141} a^{14} - \frac{791}{2069} a^{13} - \frac{2391}{184141} a^{12} - \frac{31043}{184141} a^{11} + \frac{87230}{184141} a^{10} - \frac{33161}{184141} a^{9} - \frac{7493}{184141} a^{8} + \frac{59714}{184141} a^{7} + \frac{43760}{184141} a^{6} - \frac{66598}{184141} a^{5} + \frac{7249}{184141} a^{4} + \frac{64661}{184141} a^{3} + \frac{72083}{184141} a^{2} - \frac{22076}{184141} a + \frac{65816}{184141}$, $\frac{1}{184141} a^{18} - \frac{188}{184141} a^{15} - \frac{33256}{184141} a^{14} - \frac{80247}{184141} a^{13} - \frac{14207}{184141} a^{12} + \frac{34980}{184141} a^{11} + \frac{36455}{184141} a^{10} - \frac{88575}{184141} a^{9} + \frac{66702}{184141} a^{8} - \frac{78678}{184141} a^{7} + \frac{61483}{184141} a^{6} - \frac{69417}{184141} a^{5} + \frac{6868}{184141} a^{4} - \frac{82238}{184141} a^{3} - \frac{8741}{184141} a^{2} + \frac{909}{184141} a - \frac{66600}{184141}$, $\frac{1}{4400480492326040721932357141099143591} a^{19} - \frac{4947378899718961503897270439861}{4400480492326040721932357141099143591} a^{18} + \frac{5332784664474912245459306460029}{4400480492326040721932357141099143591} a^{17} + \frac{5546832287831780196686860333186}{4400480492326040721932357141099143591} a^{16} - \frac{19699994265825131124003396122327418}{4400480492326040721932357141099143591} a^{15} + \frac{1544260033225722969716088028645530905}{4400480492326040721932357141099143591} a^{14} - \frac{729913725477769105840537823892929217}{4400480492326040721932357141099143591} a^{13} - \frac{1711694317370337956544684059136280988}{4400480492326040721932357141099143591} a^{12} + \frac{471606585701340388563666222205211519}{4400480492326040721932357141099143591} a^{11} + \frac{116690532758686955320686899821500698}{4400480492326040721932357141099143591} a^{10} - \frac{2056228016115939045074101577635670547}{4400480492326040721932357141099143591} a^{9} + \frac{1442797088526163948888296296697034050}{4400480492326040721932357141099143591} a^{8} + \frac{1263976166726037453371739763806673610}{4400480492326040721932357141099143591} a^{7} - \frac{457172815360481636849748629071708133}{4400480492326040721932357141099143591} a^{6} - \frac{1748255277368910891864649476570277171}{4400480492326040721932357141099143591} a^{5} + \frac{314934474600265553705073950450810274}{4400480492326040721932357141099143591} a^{4} - \frac{1190087888218587861368733548045447439}{4400480492326040721932357141099143591} a^{3} - \frac{1328965794604476922546575123056478954}{4400480492326040721932357141099143591} a^{2} - \frac{1709278034191080005847341203869061575}{4400480492326040721932357141099143591} a - \frac{1125243369228987574069809791759}{3673492627793148784358938794691}$
Class group and class number
$C_{2}\times C_{2}\times C_{842}$, which has order $3368$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.136125.2, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |