Normalized defining polynomial
\( x^{20} - 4 x^{19} + x^{18} + 16 x^{17} - 73 x^{16} + 166 x^{15} + 150 x^{14} - 1076 x^{13} + 1303 x^{12} - 140 x^{11} - 3577 x^{10} + 12122 x^{9} - 9802 x^{8} - 20532 x^{7} + 35271 x^{6} + 4824 x^{5} - 25354 x^{4} - 14554 x^{3} + 29838 x^{2} - 6580 x + 421 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10015348012400946058975158354944=2^{10}\cdot 191^{2}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 191, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{2} a^{13} - \frac{1}{6} a^{12} - \frac{1}{2} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{54} a^{17} - \frac{2}{27} a^{16} - \frac{1}{18} a^{15} + \frac{7}{54} a^{14} + \frac{2}{9} a^{13} + \frac{4}{9} a^{12} + \frac{4}{27} a^{11} + \frac{13}{54} a^{10} + \frac{23}{54} a^{9} + \frac{13}{54} a^{8} - \frac{25}{54} a^{7} + \frac{10}{27} a^{6} - \frac{5}{27} a^{5} + \frac{10}{27} a^{4} + \frac{4}{27} a^{3} + \frac{13}{27} a^{2} + \frac{7}{54} a + \frac{19}{54}$, $\frac{1}{54} a^{18} - \frac{1}{54} a^{16} + \frac{2}{27} a^{15} - \frac{5}{54} a^{14} - \frac{1}{2} a^{13} + \frac{23}{54} a^{12} + \frac{1}{6} a^{11} - \frac{4}{9} a^{10} - \frac{2}{9} a^{9} + \frac{1}{3} a^{8} + \frac{19}{54} a^{7} + \frac{7}{54} a^{6} + \frac{25}{54} a^{5} - \frac{10}{27} a^{4} + \frac{13}{54} a^{3} - \frac{1}{9} a^{2} - \frac{25}{54} a + \frac{13}{54}$, $\frac{1}{18547234207586426486470006080814878} a^{19} - \frac{2722024641058105892593914688310}{3091205701264404414411667680135813} a^{18} + \frac{24145162463456054145351038608604}{9273617103793213243235003040407439} a^{17} + \frac{142558050617651739490534463791942}{9273617103793213243235003040407439} a^{16} + \frac{721628372079356057498265603110435}{9273617103793213243235003040407439} a^{15} + \frac{529981190874146013639069797821210}{9273617103793213243235003040407439} a^{14} + \frac{7472958714801721772462413162455239}{18547234207586426486470006080814878} a^{13} - \frac{2926890578279214521498619451070413}{6182411402528808828823335360271626} a^{12} - \frac{2733258106910250749151900293036704}{9273617103793213243235003040407439} a^{11} - \frac{207519444410968092660615821913719}{806401487286366368976956786122386} a^{10} - \frac{1463394719788615785820868187678743}{18547234207586426486470006080814878} a^{9} + \frac{405216817506404604236618146804}{1619280094952542909592282703057} a^{8} + \frac{1438978827962030671279653511650580}{9273617103793213243235003040407439} a^{7} - \frac{4687532800394815944477435594083947}{18547234207586426486470006080814878} a^{6} + \frac{4421051981601541152019571970210553}{9273617103793213243235003040407439} a^{5} + \frac{3712218772350886400289708399506183}{18547234207586426486470006080814878} a^{4} - \frac{1056519348635961937862008387342213}{9273617103793213243235003040407439} a^{3} - \frac{917553746247403860776518490195813}{6182411402528808828823335360271626} a^{2} - \frac{155089226029799416222372088298853}{1030401900421468138137222560045271} a + \frac{892338458455654690682507170129655}{18547234207586426486470006080814878}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30997775.2523 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n848 are not computed |
| Character table for t20n848 is not computed |
Intermediate fields
| 5.5.160801.1, 10.0.4938679665791.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $191$ | 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.8.0.1 | $x^{8} - x + 58$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||