Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^19 - 3*x^18 - x^17 + 15*x^16 - 22*x^15 - 6*x^14 + 59*x^13 - 70*x^12 - 6*x^11 + 106*x^10 - 107*x^9 + 92*x^7 - 73*x^6 - x^5 + 35*x^4 - 19*x^3 - x^2 + 4*x - 1)
gp: K = bnfinit(x^19 - 3*x^18 - x^17 + 15*x^16 - 22*x^15 - 6*x^14 + 59*x^13 - 70*x^12 - 6*x^11 + 106*x^10 - 107*x^9 + 92*x^7 - 73*x^6 - x^5 + 35*x^4 - 19*x^3 - x^2 + 4*x - 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, -1, -19, 35, -1, -73, 92, 0, -107, 106, -6, -70, 59, -6, -22, 15, -1, -3, 1]);
\(x^{19} - 3 x^{18} - x^{17} + 15 x^{16} - 22 x^{15} - 6 x^{14} + 59 x^{13} - 70 x^{12} - 6 x^{11} + 106 x^{10} - 107 x^{9} + 92 x^{7} - 73 x^{6} - x^{5} + 35 x^{4} - 19 x^{3} - x^{2} + 4 x - 1\)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $19$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[7, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(105491601716452677126377141804\)\(\medspace = 2^{2}\cdot 131\cdot 149\cdot 397\cdot 20117\cdot 218819\cdot 773146117559\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.69$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 131, 149, 397, 20117, 218819, 773146117559$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 52861133.6694 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{19}$ (as 19T8):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A non-solvable group of order 121645100408832000 |
The 490 conjugacy class representatives for $S_{19}$ are not computed |
Character table for $S_{19}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $17{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.13.0.1}{13} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
$131$ | 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
131.7.0.1 | $x^{7} - x + 11$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
131.10.0.1 | $x^{10} - x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
149 | Data not computed | ||||||
397 | Data not computed | ||||||
20117 | Data not computed | ||||||
218819 | Data not computed | ||||||
773146117559 | Data not computed |