Normalized defining polynomial
\( x^{19} - x^{18} - 216 x^{17} + 329 x^{16} + 17417 x^{15} - 31517 x^{14} - 670894 x^{13} + 1275207 x^{12} + 13251603 x^{11} - 24036830 x^{10} - 137385192 x^{9} + 209490406 x^{8} + 773799359 x^{7} - 862308300 x^{6} - 2305645775 x^{5} + 1693728828 x^{4} + 3278226422 x^{3} - 1551959900 x^{2} - 1701753321 x + 554402371 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(755947441066272696677489606263668936388276269649=457^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $331.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $457$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(457\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{457}(256,·)$, $\chi_{457}(1,·)$, $\chi_{457}(68,·)$, $\chi_{457}(453,·)$, $\chi_{457}(200,·)$, $\chi_{457}(393,·)$, $\chi_{457}(215,·)$, $\chi_{457}(16,·)$, $\chi_{457}(407,·)$, $\chi_{457}(218,·)$, $\chi_{457}(347,·)$, $\chi_{457}(289,·)$, $\chi_{457}(42,·)$, $\chi_{457}(174,·)$, $\chi_{457}(241,·)$, $\chi_{457}(114,·)$, $\chi_{457}(54,·)$, $\chi_{457}(440,·)$, $\chi_{457}(185,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{18} - \frac{48565805214858160384900688062775428390191621527039217474320842916670137446995456}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{17} - \frac{10426924704537712345085771343626282863172703309930471486730785172374806270655579}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{16} - \frac{40113070893093264896740747402472682024916229055168278349519993303319684200378438}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{15} - \frac{28900447009170191607394564626090272913177975644483246931228748216191838096399325}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{14} - \frac{14417729146565843611578906582113664352664795408156044363245803986801935529341471}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{13} + \frac{45821310524168705263967732973677843213527080567734994599166564506201010766635246}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{12} - \frac{41132790127421684035452761811149475728558766379912669114266388338456713608772412}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{11} - \frac{3743389818247557960195711584292590380140640953689146769669476661445095164084812}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{10} + \frac{48157269399528821213192459892300576097228239866707818807268693283876861519559340}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{9} + \frac{609893613292674474534767941251557221014146324001969927386521941084345291904495}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{8} + \frac{48527564786258675785457180533281293083230835332517312081246923983202626756271271}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{7} - \frac{566410944241927813135362983688219709852340370095571396430164413361223861690906}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{6} + \frac{43520070452054704833530778222666476907279805090896329892148657009551230920426243}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{5} - \frac{11873987390374351489138417525940782198773988864637702167085724199254307323007221}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{4} - \frac{5909179369126499240778747052804816308441875465565710444792476267317920758452412}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{3} + \frac{47314708131180935309413704055760864764586538807791989681804597175106606343877264}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a^{2} + \frac{4449973944869871689327840478813969029056618750646558642321453113956192532598426}{97508773145721215297215152412273541567940471081469801738609008394727562742806613} a + \frac{328929397604971771830118179972752413208029126312965899895514644999030977405219}{767785615320639490529253168600579067464098197491888202666212664525413879864619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 438964507237879700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 457 | Data not computed | ||||||