Normalized defining polynomial
\( x^{19} - x^{18} - 360 x^{17} - 173 x^{16} + 45376 x^{15} + 58762 x^{14} - 2558302 x^{13} - 4227138 x^{12} + 70534890 x^{11} + 120121397 x^{10} - 973700212 x^{9} - 1501612590 x^{8} + 6678374954 x^{7} + 8595059019 x^{6} - 21259099080 x^{5} - 21796436285 x^{4} + 27241052007 x^{3} + 18814754704 x^{2} - 12659238391 x - 3483379661 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7326960021331421245780688833073465007173042939202481=761^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $536.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(761\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{761}(1,·)$, $\chi_{761}(258,·)$, $\chi_{761}(25,·)$, $\chi_{761}(274,·)$, $\chi_{761}(405,·)$, $\chi_{761}(625,·)$, $\chi_{761}(152,·)$, $\chi_{761}(473,·)$, $\chi_{761}(410,·)$, $\chi_{761}(357,·)$, $\chi_{761}(679,·)$, $\chi_{761}(680,·)$, $\chi_{761}(233,·)$, $\chi_{761}(554,·)$, $\chi_{761}(232,·)$, $\chi_{761}(498,·)$, $\chi_{761}(756,·)$, $\chi_{761}(636,·)$, $\chi_{761}(362,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{157} a^{16} + \frac{67}{157} a^{15} + \frac{52}{157} a^{14} + \frac{10}{157} a^{13} - \frac{56}{157} a^{12} + \frac{59}{157} a^{11} - \frac{36}{157} a^{10} - \frac{7}{157} a^{9} + \frac{2}{157} a^{8} + \frac{63}{157} a^{7} - \frac{62}{157} a^{6} + \frac{11}{157} a^{5} - \frac{38}{157} a^{4} - \frac{43}{157} a^{3} + \frac{17}{157} a^{2} + \frac{17}{157} a - \frac{53}{157}$, $\frac{1}{10519} a^{17} - \frac{32}{10519} a^{16} - \frac{3598}{10519} a^{15} - \frac{2783}{10519} a^{14} + \frac{1623}{10519} a^{13} - \frac{5230}{10519} a^{12} + \frac{3700}{10519} a^{11} - \frac{3351}{10519} a^{10} + \frac{1}{157} a^{9} - \frac{2961}{10519} a^{8} - \frac{333}{10519} a^{7} - \frac{1701}{10519} a^{6} + \frac{4682}{10519} a^{5} + \frac{3562}{10519} a^{4} - \frac{2163}{10519} a^{3} - \frac{2294}{10519} a^{2} + \frac{3131}{10519} a - \frac{1818}{10519}$, $\frac{1}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{18} - \frac{112480927600848173427572286566641942509293827529284685303377101624305220547358950443130}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{17} - \frac{1980006658650159103389020321380596718161073213238656896929050243257946911824913702232957}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{16} - \frac{4031736710462742011518308731887738353161508585253361630935519486831605525183691215619179215}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{15} + \frac{2093632334155429692768489884759319572285107133295647671392392629099477273613654508725447536}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{14} + \frac{1339520512437990486569996569493380154352435202961785774284035731330937355739970644250055335}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{13} + \frac{3705868490608764098232523456155600723565021372593475312079258362069980505540791749943304691}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{12} + \frac{4993461878152931187789755621295394243159330250928544126911743962993812552573749345374798873}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{11} - \frac{5062147014423863368236857529102268827045452369536798425221215066406623299034359070776264187}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{10} + \frac{573386293370649748905004431425821306482070903017751290608089458221098336082305984610087139}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{9} + \frac{1824348758135733512374350065945891851396962916038187214958885683056857634389649235259216282}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{8} + \frac{824637325124721916465643740769244575786359272896142564153647762693218166000332800330780683}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{7} - \frac{5071343630096268630599909431567420948262482905265142179481597449606686959661004829744792067}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{6} - \frac{783075306822531794179713630859923563460627530256526098283363694793874701154323379866345959}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{5} + \frac{2261750216336770522827539267358901080529757329750398845390609502458252805078878916866752184}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{4} - \frac{196537495551380174709227030257148782025102845622829174818811176538812830983731497422284490}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{3} - \frac{1167031691965930866654204999729125948119786467900695646417754499291673590391863130590766187}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a^{2} - \frac{589714758548603648265305576415644140170601625468176257536726051769693635832417109950435786}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971} a - \frac{3533574894593310772119105895751834403463660490992599035544847933319925319941426773984551162}{10325124348661486292605003346731115757710824425761196091106924479282231882475596246810254971}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94833868482425830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{19}$ | $19$ | $19$ | $19$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 761 | Data not computed | ||||||