Normalized defining polynomial
\( x^{19} - 66 x^{17} + 1650 x^{15} - 77 x^{14} - 20317 x^{13} + 4257 x^{12} + 134959 x^{11} - 60665 x^{10} - 479512 x^{9} + 349019 x^{8} + 801636 x^{7} - 833723 x^{6} - 391512 x^{5} + 661705 x^{4} - 118602 x^{3} - 56947 x^{2} + 6820 x + 1023 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4379339948779445965938732832699226041=11^{18}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{96647827391144002298850207410179143} a^{18} + \frac{14128361692011533387163869958073798}{96647827391144002298850207410179143} a^{17} + \frac{13581269517942120863289065035858063}{96647827391144002298850207410179143} a^{16} - \frac{9760671827082630086081919175884827}{96647827391144002298850207410179143} a^{15} - \frac{2818293806323678681028359925839382}{96647827391144002298850207410179143} a^{14} - \frac{7667324676785815338178775153580403}{96647827391144002298850207410179143} a^{13} - \frac{1483281824965363516145916297708809}{96647827391144002298850207410179143} a^{12} - \frac{6668861322630717813304788934695902}{96647827391144002298850207410179143} a^{11} + \frac{48012873143070005692523074718738288}{96647827391144002298850207410179143} a^{10} + \frac{2281066022841056660201225004634894}{32215942463714667432950069136726381} a^{9} - \frac{30664145485667189132834895076226476}{96647827391144002298850207410179143} a^{8} - \frac{25453250433821156606862066104689238}{96647827391144002298850207410179143} a^{7} - \frac{272443604073308003012896352843621}{96647827391144002298850207410179143} a^{6} + \frac{16766857679077920328303636409956109}{96647827391144002298850207410179143} a^{5} + \frac{18695577020500217838603825378216038}{96647827391144002298850207410179143} a^{4} - \frac{9614844458820160843295758542142781}{32215942463714667432950069136726381} a^{3} - \frac{4833434946600792638549113901641307}{32215942463714667432950069136726381} a^{2} + \frac{41541232974804498208631151592175792}{96647827391144002298850207410179143} a + \frac{2734694671743825291817324056327211}{32215942463714667432950069136726381}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4971598897600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{19}:C_3$ (as 19T3):
| A solvable group of order 57 |
| The 9 conjugacy class representatives for $C_{19}:C_{3}$ |
| Character table for $C_{19}:C_{3}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $19$ | $19$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |