Normalized defining polynomial
\( x^{19} - x^{18} - 306 x^{17} - 79 x^{16} + 29370 x^{15} + 130 x^{14} - 1361758 x^{13} + 704483 x^{12} + 34401066 x^{11} - 34840236 x^{10} - 488507308 x^{9} + 678792838 x^{8} + 3902105097 x^{7} - 6509889712 x^{6} - 16762277726 x^{5} + 31790175776 x^{4} + 33454527221 x^{3} - 71781895812 x^{2} - 18736713884 x + 50781641759 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(394709020826813768130190448054073575320458976755889=647^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $460.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $647$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(647\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{647}(1,·)$, $\chi_{647}(257,·)$, $\chi_{647}(200,·)$, $\chi_{647}(201,·)$, $\chi_{647}(279,·)$, $\chi_{647}(464,·)$, $\chi_{647}(533,·)$, $\chi_{647}(86,·)$, $\chi_{647}(544,·)$, $\chi_{647}(158,·)$, $\chi_{647}(287,·)$, $\chi_{647}(96,·)$, $\chi_{647}(548,·)$, $\chi_{647}(104,·)$, $\chi_{647}(492,·)$, $\chi_{647}(437,·)$, $\chi_{647}(55,·)$, $\chi_{647}(56,·)$, $\chi_{647}(378,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3551} a^{16} + \frac{925}{3551} a^{15} + \frac{1738}{3551} a^{14} + \frac{1301}{3551} a^{13} - \frac{1681}{3551} a^{12} - \frac{1595}{3551} a^{11} - \frac{20}{3551} a^{10} - \frac{447}{3551} a^{9} + \frac{1604}{3551} a^{8} + \frac{1337}{3551} a^{7} + \frac{1445}{3551} a^{6} + \frac{1555}{3551} a^{5} - \frac{452}{3551} a^{4} + \frac{964}{3551} a^{3} + \frac{313}{3551} a^{2} - \frac{696}{3551} a - \frac{1611}{3551}$, $\frac{1}{44739049} a^{17} - \frac{4398}{44739049} a^{16} - \frac{4598896}{44739049} a^{15} + \frac{12549516}{44739049} a^{14} + \frac{2543613}{44739049} a^{13} - \frac{12973955}{44739049} a^{12} + \frac{962045}{44739049} a^{11} + \frac{8340782}{44739049} a^{10} - \frac{9965842}{44739049} a^{9} - \frac{11725553}{44739049} a^{8} - \frac{20232800}{44739049} a^{7} - \frac{9558006}{44739049} a^{6} - \frac{10099380}{44739049} a^{5} - \frac{10518680}{44739049} a^{4} - \frac{11494451}{44739049} a^{3} + \frac{13471118}{44739049} a^{2} - \frac{20947845}{44739049} a - \frac{10908}{1040443}$, $\frac{1}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{18} + \frac{530505971002626225593906207968651773732614567494498940863424859}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{17} - \frac{11702626846555300910894490713479645533051648920325592805416634225196}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{16} - \frac{47493068417316141807175443413748508809750610166286072144308719315040351}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{15} + \frac{38384453329226613953782861938256280346094897940480397000679245841266854}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{14} + \frac{29474153276620523515010782386321134242436277751254390205212718828365920}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{13} - \frac{45797272046162531499821549792300739377282464494546751320371664401011371}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{12} - \frac{3999859762885648914530526889993753567152455593098403981484224955389263}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{11} - \frac{954754117224238331209990606512427706724963487704076017003635006569523}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{10} + \frac{28721420030929331575811656942936340496241137175910750005429364325860120}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{9} - \frac{27637496923057524088522176757955377367146140545640617599157167674358992}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{8} - \frac{20775720322827710887842456725804385530733676547959835910920194921510432}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{7} + \frac{23419434999626292134438840427799368785885357064785164875021723187264391}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{6} + \frac{54120291000471665560389504055371961609197628966347769786825558715587805}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{5} + \frac{46996522584115040456354974874361320417505443292685337635113327151306249}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{4} + \frac{47255924530949364554175129587260226275040576418754341864751230857398082}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{3} - \frac{24518707673682169432644222886832699655024176288637106340507356657634223}{123361847490546084562745526376800363181390569154240294664716818055988993} a^{2} - \frac{55230131313593605893398510361720703961570759937527921439937787671880416}{123361847490546084562745526376800363181390569154240294664716818055988993} a - \frac{503193698139948773965343352222087281317471915591462837873092540277290}{2868880174198746152621988985506985190264896957075355689877135303627651}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24719888574728266000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{19}$ | $19$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{19}$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 647 | Data not computed | ||||||