Normalized defining polynomial
\( x^{19} - x^{18} - 108 x^{17} + 213 x^{16} + 4270 x^{15} - 11618 x^{14} - 74320 x^{13} + 248057 x^{12} + 559431 x^{11} - 2225275 x^{10} - 1928935 x^{9} + 9223494 x^{8} + 3299920 x^{7} - 17492482 x^{6} - 3737798 x^{5} + 13322064 x^{4} + 4255245 x^{3} - 3318455 x^{2} - 1865379 x - 251347 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2999429662895796650415561622892044448017561=229^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $172.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(229\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{229}(1,·)$, $\chi_{229}(161,·)$, $\chi_{229}(203,·)$, $\chi_{229}(16,·)$, $\chi_{229}(17,·)$, $\chi_{229}(214,·)$, $\chi_{229}(57,·)$, $\chi_{229}(218,·)$, $\chi_{229}(27,·)$, $\chi_{229}(225,·)$, $\chi_{229}(165,·)$, $\chi_{229}(104,·)$, $\chi_{229}(42,·)$, $\chi_{229}(43,·)$, $\chi_{229}(44,·)$, $\chi_{229}(53,·)$, $\chi_{229}(121,·)$, $\chi_{229}(60,·)$, $\chi_{229}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{89} a^{17} - \frac{25}{89} a^{16} + \frac{12}{89} a^{15} - \frac{1}{89} a^{14} - \frac{42}{89} a^{13} + \frac{16}{89} a^{12} + \frac{13}{89} a^{11} + \frac{32}{89} a^{10} + \frac{29}{89} a^{8} - \frac{22}{89} a^{7} + \frac{26}{89} a^{6} + \frac{35}{89} a^{5} - \frac{36}{89} a^{4} + \frac{19}{89} a^{3} + \frac{13}{89} a^{2} - \frac{21}{89} a - \frac{41}{89}$, $\frac{1}{890586960280420453431275712528280672450515757006003} a^{18} + \frac{3158251944488249744471091015124673255424549899629}{890586960280420453431275712528280672450515757006003} a^{17} + \frac{240111493841675190951325842940869652459576214837038}{890586960280420453431275712528280672450515757006003} a^{16} + \frac{82891693721274572165544450260198205099418245692767}{890586960280420453431275712528280672450515757006003} a^{15} + \frac{154448248615280109868036493118948889088586906547361}{890586960280420453431275712528280672450515757006003} a^{14} + \frac{402470996514117682070632249077427052338514902617461}{890586960280420453431275712528280672450515757006003} a^{13} + \frac{360324228715855209482352512526943815187770330811492}{890586960280420453431275712528280672450515757006003} a^{12} - \frac{28963255772145319006477119100114876643409346163087}{890586960280420453431275712528280672450515757006003} a^{11} + \frac{91013038000767575411237257663076051933583872513976}{890586960280420453431275712528280672450515757006003} a^{10} - \frac{157069002081559453599676362301069614493982256612206}{890586960280420453431275712528280672450515757006003} a^{9} - \frac{107927899873438593350189430971023698002343552671043}{890586960280420453431275712528280672450515757006003} a^{8} + \frac{153013227850143101724964826937353775235945408590684}{890586960280420453431275712528280672450515757006003} a^{7} - \frac{124202511331908740040441685048463388332777904672437}{890586960280420453431275712528280672450515757006003} a^{6} - \frac{430149601646763526787713114520136663593379590826473}{890586960280420453431275712528280672450515757006003} a^{5} - \frac{88859091827668967645964185573331988301046596056447}{890586960280420453431275712528280672450515757006003} a^{4} - \frac{74328542359361374978876415048064422409122666571064}{890586960280420453431275712528280672450515757006003} a^{3} + \frac{267562471565065508521694146795518350469503346260966}{890586960280420453431275712528280672450515757006003} a^{2} + \frac{427841418484345012156785343600955898547504089252826}{890586960280420453431275712528280672450515757006003} a - \frac{111289245552412705258148912329203335089623628729263}{890586960280420453431275712528280672450515757006003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038259438940000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 229 | Data not computed | ||||||