Normalized defining polynomial
\( x^{19} - 2 x^{18} - 78 x^{17} + 264 x^{16} + 1763 x^{15} - 8614 x^{14} - 9209 x^{13} + 96924 x^{12} - 60856 x^{11} - 443620 x^{10} + 727151 x^{9} + 587984 x^{8} - 2232580 x^{7} + 1188184 x^{6} + 1637520 x^{5} - 2688288 x^{4} + 1618560 x^{3} - 475264 x^{2} + 61952 x - 2048 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(222262197774010870252934365204894747669=18229^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $18229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{32} a^{6} - \frac{3}{16} a^{5} + \frac{3}{32} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{3}{32} a^{7} - \frac{1}{16} a^{6} - \frac{3}{32} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{3}{32} a^{9} + \frac{1}{64} a^{8} + \frac{1}{64} a^{7} - \frac{9}{64} a^{6} - \frac{7}{64} a^{5} - \frac{7}{32} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} + \frac{1}{128} a^{13} + \frac{1}{128} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} - \frac{3}{128} a^{9} - \frac{7}{128} a^{8} - \frac{15}{128} a^{7} + \frac{5}{128} a^{6} + \frac{7}{32} a^{5} + \frac{5}{32} a^{4} - \frac{7}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{512} a^{16} + \frac{1}{512} a^{15} + \frac{3}{512} a^{14} - \frac{5}{512} a^{13} - \frac{3}{256} a^{12} - \frac{5}{256} a^{11} - \frac{23}{512} a^{10} + \frac{3}{512} a^{9} + \frac{55}{512} a^{8} + \frac{103}{512} a^{7} - \frac{19}{256} a^{6} + \frac{25}{128} a^{5} - \frac{9}{64} a^{4} + \frac{11}{32} a^{3} - \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{191488} a^{17} - \frac{163}{191488} a^{16} + \frac{431}{191488} a^{15} - \frac{1201}{191488} a^{14} + \frac{1439}{95744} a^{13} + \frac{343}{95744} a^{12} + \frac{2289}{191488} a^{11} - \frac{4545}{191488} a^{10} - \frac{8421}{191488} a^{9} + \frac{8587}{191488} a^{8} + \frac{8519}{95744} a^{7} - \frac{6945}{47872} a^{6} + \frac{437}{23936} a^{5} + \frac{2337}{11968} a^{4} + \frac{1623}{5984} a^{3} + \frac{179}{374} a^{2} - \frac{75}{374} a + \frac{26}{187}$, $\frac{1}{1229959264581363712} a^{18} - \frac{691446653473}{1229959264581363712} a^{17} + \frac{245251580811513}{1229959264581363712} a^{16} + \frac{1232978155059901}{1229959264581363712} a^{15} + \frac{2119894724886083}{307489816145340928} a^{14} + \frac{8018032510655885}{614979632290681856} a^{13} + \frac{18022763555617325}{1229959264581363712} a^{12} + \frac{34107458580509185}{1229959264581363712} a^{11} + \frac{75210721233189801}{1229959264581363712} a^{10} + \frac{2556689669929569}{72350544975374336} a^{9} - \frac{33872058240276891}{307489816145340928} a^{8} - \frac{2275919848403623}{153744908072670464} a^{7} + \frac{6106758388031}{9609056754541904} a^{6} + \frac{1320995637802705}{38436227018167616} a^{5} + \frac{1224999943973537}{9609056754541904} a^{4} + \frac{4964417068302599}{19218113509083808} a^{3} + \frac{1044617635456181}{2402264188635476} a^{2} + \frac{36487226149956}{600566047158869} a - \frac{2502891846676}{600566047158869}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 253663561168000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38 |
| The 11 conjugacy class representatives for $D_{19}$ |
| Character table for $D_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 18229 | Data not computed | ||||||