Normalized defining polynomial
\( x^{19} - 95 x^{17} + 3800 x^{15} - 83125 x^{13} + 1080625 x^{11} - 8490625 x^{9} + 39187500 x^{7} - 97968750 x^{5} + 111328125 x^{3} - 37109375 x - 8731210 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1978419655660313589123979000000000000000000=2^{18}\cdot 5^{18}\cdot 19^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{24478} a^{10} - \frac{6923}{24478} a^{9} - \frac{25}{12239} a^{8} - \frac{6679}{24478} a^{7} + \frac{875}{24478} a^{6} + \frac{2273}{24478} a^{5} - \frac{3125}{12239} a^{4} - \frac{4954}{12239} a^{3} - \frac{8853}{24478} a^{2} + \frac{2623}{24478} a - \frac{3125}{12239}$, $\frac{1}{24478} a^{11} - \frac{55}{24478} a^{9} - \frac{10137}{24478} a^{8} + \frac{550}{12239} a^{7} - \frac{5323}{12239} a^{6} - \frac{9625}{24478} a^{5} - \frac{777}{12239} a^{4} + \frac{9897}{24478} a^{3} + \frac{3108}{12239} a^{2} - \frac{9897}{24478} a + \frac{4177}{12239}$, $\frac{1}{24478} a^{12} + \frac{373}{12239} a^{9} - \frac{825}{12239} a^{8} - \frac{10821}{24478} a^{7} - \frac{5228}{12239} a^{6} + \frac{1071}{24478} a^{5} + \frac{8839}{24478} a^{4} - \frac{104}{12239} a^{3} - \frac{3626}{12239} a^{2} + \frac{5751}{24478} a - \frac{529}{12239}$, $\frac{1}{24478} a^{13} - \frac{975}{12239} a^{9} + \frac{2001}{24478} a^{8} + \frac{1522}{12239} a^{7} + \frac{9227}{24478} a^{6} + \frac{2163}{24478} a^{5} + \frac{5736}{12239} a^{4} - \frac{4120}{12239} a^{3} + \frac{1029}{24478} a^{2} + \frac{212}{12239} a + \frac{5840}{12239}$, $\frac{1}{24478} a^{14} - \frac{10471}{24478} a^{9} + \frac{1728}{12239} a^{8} + \frac{7473}{24478} a^{7} - \frac{5047}{24478} a^{6} - \frac{5587}{12239} a^{5} - \frac{2848}{12239} a^{4} - \frac{6429}{24478} a^{3} - \frac{2968}{12239} a^{2} + \frac{5314}{12239} a + \frac{1272}{12239}$, $\frac{1}{24478} a^{15} - \frac{7919}{24478} a^{9} - \frac{2039}{24478} a^{8} - \frac{3605}{12239} a^{7} - \frac{3821}{24478} a^{6} + \frac{2271}{24478} a^{5} + \frac{3993}{24478} a^{4} + \frac{4819}{12239} a^{3} + \frac{9051}{24478} a^{2} + \frac{3661}{24478} a + \frac{5211}{12239}$, $\frac{1}{24478} a^{16} + \frac{2722}{12239} a^{9} - \frac{5756}{12239} a^{8} + \frac{1068}{12239} a^{7} + \frac{2061}{12239} a^{6} - \frac{5964}{12239} a^{5} + \frac{5202}{12239} a^{4} - \frac{411}{24478} a^{3} + \frac{873}{12239} a^{2} + \frac{137}{24478} a + \frac{383}{12239}$, $\frac{1}{24478} a^{17} + \frac{2829}{12239} a^{9} + \frac{2539}{12239} a^{8} - \frac{4855}{12239} a^{7} - \frac{1109}{12239} a^{6} - \frac{1209}{12239} a^{5} + \frac{169}{24478} a^{4} - \frac{4307}{12239} a^{3} - \frac{1313}{24478} a^{2} - \frac{4086}{12239} a + \frac{290}{12239}$, $\frac{1}{24478} a^{18} + \frac{5306}{12239} a^{9} + \frac{1966}{12239} a^{8} - \frac{3234}{12239} a^{7} - \frac{4306}{12239} a^{6} - \frac{9515}{24478} a^{5} + \frac{3827}{12239} a^{4} + \frac{3531}{24478} a^{3} + \frac{57}{12239} a^{2} - \frac{3343}{12239} a - \frac{4105}{12239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5210002514550000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 342 |
| The 19 conjugacy class representatives for $F_{19}$ |
| Character table for $F_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||