Normalized defining polynomial
\( x^{19} - 3 x^{18} - 82 x^{17} + 265 x^{16} + 2391 x^{15} - 8370 x^{14} - 31377 x^{13} + 122460 x^{12} + 188431 x^{11} - 899712 x^{10} - 382602 x^{9} + 3261556 x^{8} - 573488 x^{7} - 5156662 x^{6} + 2280774 x^{5} + 2646791 x^{4} - 646414 x^{3} - 707173 x^{2} - 118143 x - 1726 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1603710409222789970596991622167567965561=11^{18}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11378201340033166426721709451504679262630031767809} a^{18} - \frac{3675163336235798352479084791453650832471473508782}{11378201340033166426721709451504679262630031767809} a^{17} + \frac{5319865113822608887274159675639258766822831699057}{11378201340033166426721709451504679262630031767809} a^{16} + \frac{1355457357139475342203529243862186610274801948490}{11378201340033166426721709451504679262630031767809} a^{15} + \frac{4984633128148291382650654732931977329314953044383}{11378201340033166426721709451504679262630031767809} a^{14} + \frac{3691871479457767754159736644683876637624512673829}{11378201340033166426721709451504679262630031767809} a^{13} + \frac{4108258552450729520323912769394863725610409377380}{11378201340033166426721709451504679262630031767809} a^{12} + \frac{1946354145870029644297270627927574904906278903075}{11378201340033166426721709451504679262630031767809} a^{11} - \frac{2779751378735476760419135915144691755991116212571}{11378201340033166426721709451504679262630031767809} a^{10} + \frac{4157772685435773082397470147649767196501698120224}{11378201340033166426721709451504679262630031767809} a^{9} + \frac{1798143783657625311257098823674799011802287514238}{11378201340033166426721709451504679262630031767809} a^{8} + \frac{2111648015647432353674711422382664102776036214694}{11378201340033166426721709451504679262630031767809} a^{7} - \frac{194472132101695988835219938302418752549321510951}{11378201340033166426721709451504679262630031767809} a^{6} + \frac{3256266079514865396647492092761847760171290295233}{11378201340033166426721709451504679262630031767809} a^{5} - \frac{3979293613803319607056230104335152782290189971449}{11378201340033166426721709451504679262630031767809} a^{4} - \frac{1080469278308936043700156502620256614435008538565}{11378201340033166426721709451504679262630031767809} a^{3} - \frac{4374123694143762345582320110574832578772971949160}{11378201340033166426721709451504679262630031767809} a^{2} + \frac{5556307363144216024802928873056026143972746165659}{11378201340033166426721709451504679262630031767809} a + \frac{4234182000917607614954138609222161292736131330116}{11378201340033166426721709451504679262630031767809}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163320198457000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{19}:C_3.C_3$ (as 19T5):
| A solvable group of order 171 |
| The 11 conjugacy class representatives for $C_{19}:C_{9}$ |
| Character table for $C_{19}:C_{9}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |