Normalized defining polynomial
\( x^{19} - x^{18} - 198 x^{17} + 37 x^{16} + 12055 x^{15} - 1727 x^{14} - 335304 x^{13} + 70692 x^{12} + 4834266 x^{11} - 1201976 x^{10} - 37345852 x^{9} + 7325624 x^{8} + 153105664 x^{7} - 3418584 x^{6} - 328284116 x^{5} - 65770266 x^{4} + 325674937 x^{3} + 129492371 x^{2} - 92941225 x - 41768519 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(158435468857090504879482314342339950574787173641=419^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $304.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $419$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(419\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{419}(1,·)$, $\chi_{419}(343,·)$, $\chi_{419}(7,·)$, $\chi_{419}(136,·)$, $\chi_{419}(329,·)$, $\chi_{419}(330,·)$, $\chi_{419}(139,·)$, $\chi_{419}(208,·)$, $\chi_{419}(215,·)$, $\chi_{419}(135,·)$, $\chi_{419}(199,·)$, $\chi_{419}(107,·)$, $\chi_{419}(306,·)$, $\chi_{419}(47,·)$, $\chi_{419}(49,·)$, $\chi_{419}(114,·)$, $\chi_{419}(248,·)$, $\chi_{419}(379,·)$, $\chi_{419}(60,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} - \frac{2}{13} a^{9} + \frac{3}{13} a^{6} - \frac{6}{13} a^{5} - \frac{4}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{13} a^{11} - \frac{4}{13} a^{9} + \frac{3}{13} a^{7} + \frac{1}{13} a^{5} - \frac{4}{13} a^{3} + \frac{3}{13} a$, $\frac{1}{13} a^{12} + \frac{5}{13} a^{9} + \frac{3}{13} a^{8} + \frac{2}{13} a^{5} - \frac{4}{13} a^{4} + \frac{6}{13} a$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{169} a^{15} + \frac{4}{169} a^{14} - \frac{5}{169} a^{13} + \frac{5}{169} a^{12} - \frac{3}{169} a^{11} - \frac{80}{169} a^{9} + \frac{28}{169} a^{8} - \frac{35}{169} a^{7} - \frac{6}{13} a^{6} - \frac{19}{169} a^{5} - \frac{20}{169} a^{4} + \frac{24}{169} a^{3} - \frac{82}{169} a^{2} - \frac{6}{13} a$, $\frac{1}{11999} a^{16} + \frac{5}{11999} a^{15} + \frac{298}{11999} a^{14} - \frac{1}{923} a^{13} + \frac{288}{11999} a^{12} - \frac{367}{11999} a^{11} + \frac{128}{11999} a^{10} + \frac{420}{923} a^{9} + \frac{513}{11999} a^{8} - \frac{1205}{11999} a^{7} - \frac{2684}{11999} a^{6} + \frac{21}{923} a^{5} + \frac{3930}{11999} a^{4} - \frac{1137}{11999} a^{3} + \frac{2258}{11999} a^{2} + \frac{327}{923} a$, $\frac{1}{224417297} a^{17} - \frac{1779}{224417297} a^{16} + \frac{611350}{224417297} a^{15} + \frac{206542}{224417297} a^{14} + \frac{3145563}{224417297} a^{13} + \frac{450802}{224417297} a^{12} - \frac{7192561}{224417297} a^{11} - \frac{869915}{224417297} a^{10} + \frac{1523810}{224417297} a^{9} + \frac{515548}{3160807} a^{8} + \frac{59005469}{224417297} a^{7} + \frac{94517974}{224417297} a^{6} + \frac{30066210}{224417297} a^{5} - \frac{45897182}{224417297} a^{4} + \frac{20677680}{224417297} a^{3} - \frac{13335032}{224417297} a^{2} - \frac{6185623}{17262869} a - \frac{97}{317}$, $\frac{1}{1042834163522617761547794080884145199946303936259041} a^{18} + \frac{1900600924393924061442167165129885490020786}{1042834163522617761547794080884145199946303936259041} a^{17} + \frac{255625872441637489603664284456736166549130931}{14687805120036869880954846209635847886567661074071} a^{16} - \frac{2815499194635496076799823106420017205405060187373}{1042834163522617761547794080884145199946303936259041} a^{15} + \frac{36719646538407826183041760452195321370787473335730}{1042834163522617761547794080884145199946303936259041} a^{14} + \frac{27560233653924477161702260452184612686419923236545}{1042834163522617761547794080884145199946303936259041} a^{13} - \frac{20772073013087303763363386354774336802539010685049}{1042834163522617761547794080884145199946303936259041} a^{12} + \frac{35792355767131171182619213946124709172697392558625}{1042834163522617761547794080884145199946303936259041} a^{11} - \frac{15535502398592942626711578349519450526724901708270}{1042834163522617761547794080884145199946303936259041} a^{10} - \frac{309810982968240948803594848572405343222185193622010}{1042834163522617761547794080884145199946303936259041} a^{9} + \frac{38870511466818832626736915388436547852333041711419}{1042834163522617761547794080884145199946303936259041} a^{8} - \frac{385459208844720805062275446345449050191692390463149}{1042834163522617761547794080884145199946303936259041} a^{7} - \frac{178376834822160388438593689865108119331203700001275}{1042834163522617761547794080884145199946303936259041} a^{6} + \frac{497468026768791970790540614663346480821241981612413}{1042834163522617761547794080884145199946303936259041} a^{5} - \frac{67434928010540201373164059169947974010075016323131}{1042834163522617761547794080884145199946303936259041} a^{4} + \frac{10733897598078383776047826698348401170944759267713}{80218012578662904734445698529549630765100302789157} a^{3} + \frac{15920237766862484284822197939898284442353482697941}{1042834163522617761547794080884145199946303936259041} a^{2} - \frac{22023973750975333291921423201198984603511901118614}{80218012578662904734445698529549630765100302789157} a + \frac{72576132929794252898904974389918736234227055}{1473052363858877733522700452275182818831377101}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1240119351367981000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{19}$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{19}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 419 | Data not computed | ||||||