Normalized defining polynomial
\( x^{19} - x^{18} - 90 x^{17} + 57 x^{16} + 3044 x^{15} - 1124 x^{14} - 51184 x^{13} + 4822 x^{12} + 474003 x^{11} + 90110 x^{10} - 2465084 x^{9} - 1153239 x^{8} + 6854098 x^{7} + 5023125 x^{6} - 8711114 x^{5} - 8950277 x^{4} + 2600136 x^{3} + 5125792 x^{2} + 1553447 x + 117649 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114445997944945591651333831028437092270721=191^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(191\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{191}(1,·)$, $\chi_{191}(69,·)$, $\chi_{191}(5,·)$, $\chi_{191}(6,·)$, $\chi_{191}(32,·)$, $\chi_{191}(136,·)$, $\chi_{191}(150,·)$, $\chi_{191}(153,·)$, $\chi_{191}(25,·)$, $\chi_{191}(154,·)$, $\chi_{191}(30,·)$, $\chi_{191}(52,·)$, $\chi_{191}(160,·)$, $\chi_{191}(36,·)$, $\chi_{191}(107,·)$, $\chi_{191}(177,·)$, $\chi_{191}(180,·)$, $\chi_{191}(121,·)$, $\chi_{191}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{49} a^{12} - \frac{1}{49} a^{11} + \frac{3}{49} a^{10} + \frac{2}{49} a^{9} - \frac{3}{49} a^{8} + \frac{20}{49} a^{6} + \frac{15}{49} a^{5} - \frac{24}{49} a^{4} - \frac{2}{49} a^{3} + \frac{10}{49} a^{2} - \frac{1}{7} a$, $\frac{1}{49} a^{13} + \frac{2}{49} a^{11} - \frac{2}{49} a^{10} - \frac{1}{49} a^{9} - \frac{3}{49} a^{8} - \frac{1}{49} a^{7} - \frac{2}{7} a^{6} - \frac{9}{49} a^{5} - \frac{19}{49} a^{4} + \frac{8}{49} a^{3} + \frac{3}{49} a^{2} + \frac{2}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{343} a^{15} + \frac{3}{343} a^{13} - \frac{3}{343} a^{12} + \frac{23}{343} a^{11} - \frac{8}{343} a^{10} + \frac{17}{343} a^{9} + \frac{1}{49} a^{8} + \frac{11}{343} a^{7} + \frac{143}{343} a^{6} + \frac{61}{343} a^{5} + \frac{106}{343} a^{4} - \frac{46}{343} a^{3} + \frac{3}{49} a^{2}$, $\frac{1}{343} a^{16} + \frac{3}{343} a^{14} - \frac{3}{343} a^{13} + \frac{2}{343} a^{12} + \frac{13}{343} a^{11} + \frac{3}{343} a^{10} + \frac{2}{49} a^{9} - \frac{24}{343} a^{8} - \frac{4}{343} a^{7} - \frac{16}{343} a^{6} + \frac{134}{343} a^{5} + \frac{66}{343} a^{4} + \frac{2}{49} a^{3} - \frac{16}{49} a^{2} - \frac{1}{7} a$, $\frac{1}{2401} a^{17} - \frac{2}{2401} a^{16} + \frac{3}{2401} a^{15} - \frac{16}{2401} a^{14} + \frac{1}{2401} a^{13} + \frac{9}{2401} a^{12} - \frac{135}{2401} a^{11} - \frac{27}{2401} a^{10} + \frac{53}{2401} a^{9} - \frac{166}{2401} a^{8} - \frac{1}{2401} a^{7} + \frac{264}{2401} a^{6} + \frac{988}{2401} a^{5} - \frac{965}{2401} a^{4} + \frac{8}{49} a^{3} + \frac{15}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{4327223165521294948263316675859741} a^{18} - \frac{491732326964188351515199255643}{4327223165521294948263316675859741} a^{17} - \frac{3331576872142052539766510866815}{4327223165521294948263316675859741} a^{16} + \frac{692768881823507288348466975674}{4327223165521294948263316675859741} a^{15} + \frac{25167318703770153041158185493852}{4327223165521294948263316675859741} a^{14} - \frac{29180078317179517535127387611114}{4327223165521294948263316675859741} a^{13} + \frac{4805903830560264512313024655985}{618174737931613564037616667979963} a^{12} + \frac{15970275892829005628127945848674}{4327223165521294948263316675859741} a^{11} - \frac{65729688008939871389812327444101}{4327223165521294948263316675859741} a^{10} - \frac{12447685091752672460672247731297}{4327223165521294948263316675859741} a^{9} - \frac{30765499074682577069307074186981}{4327223165521294948263316675859741} a^{8} - \frac{104169132650738606151760368489540}{4327223165521294948263316675859741} a^{7} + \frac{918270185567052916882506946968152}{4327223165521294948263316675859741} a^{6} - \frac{1385689641390177072865363263127800}{4327223165521294948263316675859741} a^{5} + \frac{397955530380109356011822791433465}{4327223165521294948263316675859741} a^{4} - \frac{149836593829282597436809093608200}{618174737931613564037616667979963} a^{3} + \frac{32856040302725271266545661721554}{88310676847373366291088095425709} a^{2} - \frac{6275928590812692883642438349052}{12615810978196195184441156489387} a - \frac{115612633198487845282252934344}{257465530167269289478390948763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2998086774930000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{19}$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 191 | Data not computed | ||||||