Normalized defining polynomial
\( x^{19} - 171 x^{17} - 133 x^{16} + 11476 x^{15} + 15580 x^{14} - 385833 x^{13} - 673436 x^{12} + 6916190 x^{11} + 13391960 x^{10} - 66283229 x^{9} - 126730380 x^{8} + 339213156 x^{7} + 582575340 x^{6} - 861915924 x^{5} - 1264657480 x^{4} + 868638105 x^{3} + 1138104275 x^{2} - 137550709 x - 221874931 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10842505080063916320800450434338728415281531281=19^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $264.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(361=19^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{361}(1,·)$, $\chi_{361}(324,·)$, $\chi_{361}(134,·)$, $\chi_{361}(267,·)$, $\chi_{361}(77,·)$, $\chi_{361}(210,·)$, $\chi_{361}(20,·)$, $\chi_{361}(343,·)$, $\chi_{361}(153,·)$, $\chi_{361}(286,·)$, $\chi_{361}(96,·)$, $\chi_{361}(229,·)$, $\chi_{361}(39,·)$, $\chi_{361}(172,·)$, $\chi_{361}(305,·)$, $\chi_{361}(115,·)$, $\chi_{361}(248,·)$, $\chi_{361}(58,·)$, $\chi_{361}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{18} + \frac{385773302914194215958708474679153265996618803786785791891677387642124790975}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{17} - \frac{137758447500011035831700065916657168294693413641717360633740737929262364770}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{16} - \frac{275922122987580811277954141668589623498080180458499245749456794283976807730}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{15} - \frac{204932227288395113015363329992952994151287479770007783831620436828977132739}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{14} - \frac{403926988808031051792988039201735737440254238912850999914461843794759178817}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{13} + \frac{209254334101372477745862724984160008750727627142603007948133143046831245689}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{12} - \frac{382994006198842969114166023920839637893244660930891600894002623042470925244}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{11} - \frac{147958123676817920593698409000944500763618440431252886918498987251904466694}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{10} + \frac{71907278105373126737665145449571000495313397272033945456101313523015933645}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{9} + \frac{26020501230728326903654555878424656307616254382367417310027893035756790015}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{8} + \frac{234789931242068185541713682786818270535616275400365628499821258418223992753}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{7} + \frac{170156478862607699222752319663304229901253170858559621436897352853431391570}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{6} + \frac{51434669223691623854469917932221728632389097315306253574043964649863529533}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{5} + \frac{180118104386827346617145767626948229546711162091188905441111616977919351661}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{4} - \frac{126732392845067272955566618652720270512482015664048200485297892429510262733}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{3} - \frac{80302551402194570398713456053285295356331915373054352635337553228869931531}{887050307246332877087962564975981866958830166303191353650070211476081622289} a^{2} - \frac{333674235764421454047528683730568883486591779237089219452485340353240679082}{887050307246332877087962564975981866958830166303191353650070211476081622289} a + \frac{255024674187499033139330176828287511129716356017932406309033667079483395219}{887050307246332877087962564975981866958830166303191353650070211476081622289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50751893334000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 19 |
| The 19 conjugacy class representatives for $C_{19}$ |
| Character table for $C_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | R | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||