Normalized defining polynomial
\( x^{19} - 57 x^{17} + 1368 x^{15} - 17955 x^{13} + 140049 x^{11} - 660231 x^{9} + 1828332 x^{7} - 2742498 x^{5} + 1869885 x^{3} - 373977 x - 67446 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[19, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102875245824411623227124507531682584199168=2^{27}\cdot 3^{18}\cdot 19^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{393} a^{10} + \frac{38}{393} a^{9} - \frac{10}{131} a^{8} + \frac{22}{393} a^{7} - \frac{26}{131} a^{6} + \frac{65}{131} a^{5} - \frac{57}{131} a^{4} - \frac{42}{131} a^{3} + \frac{20}{131} a^{2} + \frac{64}{131} a - \frac{31}{131}$, $\frac{1}{393} a^{11} - \frac{11}{131} a^{9} - \frac{17}{393} a^{8} + \frac{1}{131} a^{7} + \frac{5}{131} a^{6} - \frac{38}{131} a^{5} + \frac{28}{131} a^{4} + \frac{44}{131} a^{3} - \frac{41}{131} a^{2} + \frac{26}{131} a - \frac{1}{131}$, $\frac{1}{393} a^{12} + \frac{58}{393} a^{9} + \frac{61}{393} a^{8} - \frac{15}{131} a^{7} + \frac{21}{131} a^{6} - \frac{54}{131} a^{5} - \frac{3}{131} a^{4} + \frac{14}{131} a^{3} + \frac{31}{131} a^{2} + \frac{15}{131} a + \frac{25}{131}$, $\frac{1}{1179} a^{13} + \frac{28}{393} a^{9} + \frac{41}{393} a^{8} - \frac{55}{393} a^{7} + \frac{48}{131} a^{6} - \frac{35}{131} a^{5} + \frac{15}{131} a^{4} - \frac{51}{131} a^{3} + \frac{55}{131} a^{2} - \frac{50}{131} a - \frac{12}{131}$, $\frac{1}{1179} a^{14} + \frac{25}{393} a^{9} - \frac{1}{393} a^{8} + \frac{52}{393} a^{7} + \frac{38}{131} a^{6} + \frac{29}{131} a^{5} - \frac{27}{131} a^{4} + \frac{52}{131} a^{3} + \frac{45}{131} a^{2} + \frac{30}{131} a - \frac{49}{131}$, $\frac{1}{1179} a^{15} - \frac{34}{393} a^{9} + \frac{16}{393} a^{8} - \frac{43}{393} a^{7} + \frac{24}{131} a^{6} + \frac{51}{131} a^{5} + \frac{36}{131} a^{4} + \frac{47}{131} a^{3} + \frac{54}{131} a^{2} + \frac{54}{131} a - \frac{11}{131}$, $\frac{1}{1179} a^{16} - \frac{2}{393} a^{9} - \frac{5}{131} a^{8} + \frac{34}{393} a^{7} - \frac{47}{131} a^{6} + \frac{19}{131} a^{5} - \frac{57}{131} a^{4} - \frac{64}{131} a^{3} - \frac{52}{131} a^{2} - \frac{62}{131} a - \frac{6}{131}$, $\frac{1}{1179} a^{17} + \frac{61}{393} a^{9} - \frac{26}{393} a^{8} + \frac{34}{393} a^{7} - \frac{33}{131} a^{6} - \frac{58}{131} a^{5} - \frac{47}{131} a^{4} - \frac{5}{131} a^{3} - \frac{22}{131} a^{2} - \frac{9}{131} a - \frac{62}{131}$, $\frac{1}{1179} a^{18} + \frac{14}{393} a^{9} + \frac{10}{131} a^{8} - \frac{44}{131} a^{6} + \frac{49}{131} a^{5} - \frac{65}{131} a^{4} + \frac{51}{131} a^{3} - \frac{50}{131} a^{2} - \frac{36}{131} a + \frac{57}{131}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1170215493390000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 342 |
| The 19 conjugacy class representatives for $F_{19}$ |
| Character table for $F_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $19$ | $18{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||