Normalized defining polynomial
\( x^{19} - 2 x^{18} + 8 x^{17} - 12 x^{16} + 43 x^{15} - 74 x^{14} + 108 x^{13} - 18 x^{12} - 25 x^{11} + 338 x^{9} - 70 x^{8} - 264 x^{7} - 128 x^{6} + 120 x^{5} + 98 x^{4} + 43 x^{3} - 22 x^{2} - 31 x - 8 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75613185918270483380568064=-\,2^{18}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{39400150873630551157999} a^{18} - \frac{12080147394465471598402}{39400150873630551157999} a^{17} - \frac{9753733715124784245249}{39400150873630551157999} a^{16} - \frac{9235379841661719531612}{39400150873630551157999} a^{15} - \frac{8557727836047276750604}{39400150873630551157999} a^{14} - \frac{3769599737957497726074}{39400150873630551157999} a^{13} - \frac{19063720987888872194204}{39400150873630551157999} a^{12} - \frac{5806182467773850213415}{39400150873630551157999} a^{11} - \frac{8612257376902739598163}{39400150873630551157999} a^{10} + \frac{17862669450433223958046}{39400150873630551157999} a^{9} - \frac{5688014749199544505380}{39400150873630551157999} a^{8} - \frac{13839704170299550729659}{39400150873630551157999} a^{7} - \frac{10932224163403606145946}{39400150873630551157999} a^{6} - \frac{2172471404164941776342}{39400150873630551157999} a^{5} + \frac{17614982574680198035959}{39400150873630551157999} a^{4} - \frac{6161996356261955966797}{39400150873630551157999} a^{3} + \frac{17496426713903776840932}{39400150873630551157999} a^{2} + \frac{2488339540236741096796}{39400150873630551157999} a - \frac{16292170091273999535750}{39400150873630551157999}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 540383.098056 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 342 |
| The 19 conjugacy class representatives for $F_{19}$ |
| Character table for $F_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||
Additional information
The polynomial was contributed by Noam Elkies.