Normalized defining polynomial
\( x^{19} - 9 x^{18} + 24 x^{17} - 6 x^{16} - 42 x^{15} + 4 x^{14} + 34 x^{13} + 74 x^{12} + 46 x^{11} - 238 x^{10} - 49 x^{9} + 181 x^{8} + 195 x^{7} + 116 x^{6} - 193 x^{5} - 275 x^{4} + 106 x^{3} - 8 x^{2} + 121 x - 1 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-49578494467761916312526550343=-\,1543^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1543$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{2}{9} a^{6} + \frac{2}{9} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{855} a^{16} - \frac{11}{285} a^{15} + \frac{41}{855} a^{14} + \frac{89}{855} a^{13} + \frac{14}{171} a^{12} + \frac{11}{285} a^{11} + \frac{103}{855} a^{10} + \frac{82}{855} a^{9} - \frac{4}{57} a^{8} - \frac{67}{285} a^{7} - \frac{17}{855} a^{6} - \frac{371}{855} a^{5} + \frac{73}{171} a^{4} - \frac{29}{285} a^{3} + \frac{251}{855} a^{2} - \frac{169}{855} a - \frac{61}{855}$, $\frac{1}{2565} a^{17} - \frac{98}{2565} a^{15} - \frac{26}{855} a^{14} - \frac{413}{2565} a^{13} - \frac{32}{2565} a^{12} - \frac{43}{2565} a^{11} - \frac{43}{855} a^{10} + \frac{122}{855} a^{9} + \frac{194}{2565} a^{8} - \frac{5}{27} a^{7} - \frac{184}{855} a^{6} + \frac{92}{2565} a^{5} - \frac{487}{2565} a^{4} + \frac{179}{513} a^{3} + \frac{298}{855} a^{2} + \frac{917}{2565} a + \frac{1027}{2565}$, $\frac{1}{4772442701295} a^{18} + \frac{662887919}{4772442701295} a^{17} + \frac{1752360862}{4772442701295} a^{16} + \frac{33487901806}{954488540259} a^{15} + \frac{13895980616}{954488540259} a^{14} + \frac{58546782047}{1590814233765} a^{13} + \frac{736040120899}{4772442701295} a^{12} - \frac{723266576861}{4772442701295} a^{11} - \frac{43584455216}{318162846753} a^{10} + \frac{474576464078}{4772442701295} a^{9} + \frac{935269937}{38800347165} a^{8} + \frac{647391070363}{4772442701295} a^{7} - \frac{1487278745026}{4772442701295} a^{6} - \frac{660860588378}{1590814233765} a^{5} - \frac{1990918487548}{4772442701295} a^{4} + \frac{326430003014}{4772442701295} a^{3} - \frac{26896025713}{60410667105} a^{2} + \frac{185213667625}{954488540259} a - \frac{51519525688}{251181194805}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17317158.8896 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38 |
| The 11 conjugacy class representatives for $D_{19}$ |
| Character table for $D_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $19$ | $19$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $19$ | $19$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1543 | Data not computed | ||||||