Normalized defining polynomial
\( x^{19} - 38 x^{17} + 703 x^{15} - 228 x^{14} - 7239 x^{13} + 6384 x^{12} + 39159 x^{11} - 64068 x^{10} - 78147 x^{9} + 263112 x^{8} - 144818 x^{7} - 236892 x^{6} + 532855 x^{5} - 695400 x^{4} + 696844 x^{3} - 445968 x^{2} + 229824 x - 110592 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33600614943460448322716069311260139=-\,19^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{24} a^{4} + \frac{1}{24} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{144} a^{11} - \frac{1}{48} a^{10} - \frac{1}{144} a^{9} + \frac{1}{18} a^{7} - \frac{5}{144} a^{5} + \frac{1}{48} a^{4} + \frac{61}{144} a^{3} + \frac{1}{3} a^{2} + \frac{17}{36} a + \frac{1}{3}$, $\frac{1}{144} a^{12} + \frac{1}{72} a^{10} - \frac{1}{48} a^{9} - \frac{1}{36} a^{8} - \frac{29}{144} a^{6} + \frac{1}{12} a^{5} - \frac{7}{72} a^{4} + \frac{7}{16} a^{3} - \frac{5}{18} a^{2} + \frac{5}{12} a$, $\frac{1}{288} a^{13} - \frac{1}{288} a^{11} - \frac{7}{288} a^{9} + \frac{1}{48} a^{8} + \frac{7}{288} a^{7} - \frac{1}{24} a^{6} + \frac{49}{288} a^{5} - \frac{1}{24} a^{4} + \frac{71}{288} a^{3} - \frac{11}{48} a^{2} + \frac{5}{12} a$, $\frac{1}{288} a^{14} - \frac{1}{288} a^{12} + \frac{5}{288} a^{10} - \frac{1}{48} a^{9} - \frac{5}{288} a^{8} + \frac{1}{24} a^{7} - \frac{47}{288} a^{6} + \frac{1}{8} a^{5} + \frac{59}{288} a^{4} - \frac{1}{48} a^{3} - \frac{5}{24} a^{2} + \frac{1}{12} a$, $\frac{1}{288} a^{15} - \frac{1}{48} a^{10} + \frac{1}{72} a^{9} + \frac{1}{48} a^{8} - \frac{1}{4} a^{6} - \frac{1}{18} a^{5} + \frac{5}{48} a^{4} + \frac{91}{288} a^{3} - \frac{5}{48} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{1728} a^{16} + \frac{1}{1728} a^{15} + \frac{1}{1728} a^{13} - \frac{1}{432} a^{12} - \frac{1}{576} a^{11} - \frac{5}{864} a^{10} + \frac{47}{1728} a^{9} - \frac{1}{54} a^{8} - \frac{1}{192} a^{7} - \frac{1}{54} a^{6} + \frac{331}{1728} a^{5} - \frac{1}{64} a^{4} - \frac{85}{216} a^{3} - \frac{145}{432} a^{2} - \frac{13}{36} a - \frac{1}{3}$, $\frac{1}{44928} a^{17} - \frac{7}{44928} a^{16} + \frac{1}{864} a^{15} - \frac{53}{44928} a^{14} + \frac{5}{3744} a^{13} - \frac{1}{3456} a^{12} + \frac{61}{22464} a^{11} - \frac{515}{44928} a^{10} + \frac{25}{936} a^{9} + \frac{1837}{44928} a^{8} + \frac{23}{5616} a^{7} - \frac{10219}{44928} a^{6} - \frac{227}{3456} a^{5} - \frac{2071}{22464} a^{4} - \frac{7}{936} a^{3} + \frac{851}{2808} a^{2} - \frac{7}{36} a + \frac{3}{13}$, $\frac{1}{431059976754143919901056} a^{18} + \frac{373866811795322195}{35921664729511993325088} a^{17} - \frac{81016404862559107673}{431059976754143919901056} a^{16} - \frac{8031016140055928353}{5321728108075850862976} a^{15} + \frac{40510207904925414565}{33158459750318763069312} a^{14} + \frac{119186151865216585309}{143686658918047973300352} a^{13} - \frac{135061596995156953769}{47895552972682657766784} a^{12} - \frac{27797133245399049917}{47895552972682657766784} a^{11} - \frac{734181150814994075581}{47895552972682657766784} a^{10} + \frac{1034003639877070564589}{47895552972682657766784} a^{9} - \frac{2699142237496533274855}{143686658918047973300352} a^{8} + \frac{1359106788617060853493}{47895552972682657766784} a^{7} - \frac{24613953369902649414209}{107764994188535979975264} a^{6} - \frac{22876120399774580903257}{143686658918047973300352} a^{5} - \frac{21865467284824721147179}{215529988377071959950528} a^{4} + \frac{135904126339845164035}{997824020264222036808} a^{3} + \frac{2857439909628598537709}{13470624273566997496908} a^{2} - \frac{860680176964427119933}{4490208091188999165636} a + \frac{171942530252109252305}{374184007599083263803}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 215015238772 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38 |
| The 11 conjugacy class representatives for $D_{19}$ |
| Character table for $D_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $19$ | R | $19$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $19$ | $19$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||