Normalized defining polynomial
\( x^{19} + 9 x^{17} - 10 x^{16} + 8 x^{15} - 45 x^{14} + 39 x^{13} + 7 x^{12} + 42 x^{11} - 36 x^{10} - 60 x^{9} + 9 x^{8} + 55 x^{7} + 63 x^{6} + 15 x^{5} - 88 x^{4} - 7 x^{3} + 27 x^{2} + 51 x + 1 \)
Invariants
Degree: | $19$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1733003264116942402576542823\)\(\medspace = -\,1063^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $27.14$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $1063$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{45} a^{15} - \frac{2}{45} a^{14} + \frac{2}{45} a^{13} - \frac{1}{45} a^{12} + \frac{7}{45} a^{11} + \frac{7}{45} a^{10} - \frac{1}{45} a^{9} - \frac{7}{45} a^{8} - \frac{19}{45} a^{7} + \frac{4}{9} a^{6} + \frac{16}{45} a^{5} + \frac{1}{45} a^{4} - \frac{7}{45} a^{3} + \frac{2}{45} a^{2} + \frac{2}{9} a - \frac{11}{45}$, $\frac{1}{45} a^{16} - \frac{2}{45} a^{14} - \frac{2}{45} a^{13} - \frac{1}{9} a^{12} + \frac{2}{15} a^{11} - \frac{2}{45} a^{10} + \frac{1}{45} a^{9} + \frac{2}{45} a^{8} - \frac{2}{5} a^{7} + \frac{11}{45} a^{6} - \frac{7}{45} a^{5} + \frac{1}{9} a^{4} + \frac{1}{15} a^{3} - \frac{16}{45} a^{2} - \frac{1}{45} a - \frac{4}{15}$, $\frac{1}{1845} a^{17} + \frac{2}{205} a^{16} - \frac{1}{205} a^{15} - \frac{14}{1845} a^{14} + \frac{1}{369} a^{13} - \frac{29}{615} a^{12} + \frac{23}{205} a^{11} + \frac{31}{1845} a^{10} + \frac{18}{205} a^{9} + \frac{3}{205} a^{8} + \frac{11}{41} a^{7} - \frac{274}{1845} a^{6} + \frac{247}{1845} a^{5} + \frac{62}{615} a^{4} - \frac{47}{205} a^{3} + \frac{887}{1845} a^{2} - \frac{101}{369} a + \frac{14}{205}$, $\frac{1}{5334406065} a^{18} + \frac{468139}{5334406065} a^{17} + \frac{4847900}{1066881213} a^{16} + \frac{1060909}{197570595} a^{15} - \frac{141032008}{5334406065} a^{14} + \frac{117424238}{5334406065} a^{13} - \frac{33017746}{5334406065} a^{12} - \frac{61097681}{592711785} a^{11} + \frac{751016}{57359205} a^{10} - \frac{228245572}{1778135355} a^{9} + \frac{29836781}{197570595} a^{8} - \frac{182711074}{592711785} a^{7} - \frac{1444961006}{5334406065} a^{6} - \frac{2211984968}{5334406065} a^{5} + \frac{2559777664}{5334406065} a^{4} - \frac{28684102}{118542357} a^{3} + \frac{209721638}{5334406065} a^{2} - \frac{148281941}{1066881213} a - \frac{1803923422}{5334406065}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2724154.30052 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 38 |
The 11 conjugacy class representatives for $D_{19}$ |
Character table for $D_{19}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $19$ | $19$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
1063 | Data not computed |