Normalized defining polynomial
\( x^{19} - 171 x^{16} - 950 x^{15} + 570 x^{14} + 8683 x^{13} + 45277 x^{12} + 196973 x^{11} + 941507 x^{10} + 5016304 x^{9} + 7072465 x^{8} - 53817785 x^{7} - 342335673 x^{6} - 1023131209 x^{5} - 1426640821 x^{4} + 157805450 x^{3} + 1883060322 x^{2} - 656755330 x - 2423978601 \)
Invariants
| Degree: | $19$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1580770532156861979997149793605296459437459=-\,19^{33}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $166.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{1}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{209} a^{10} - \frac{1}{209} a^{9} + \frac{47}{209} a^{8} + \frac{28}{209} a^{7} - \frac{2}{19} a^{6} - \frac{65}{209} a^{5} - \frac{12}{209} a^{4} - \frac{8}{209} a^{3} + \frac{6}{209} a^{2} - \frac{6}{19} a + \frac{5}{19}$, $\frac{1}{209} a^{11} + \frac{8}{209} a^{9} - \frac{96}{209} a^{8} + \frac{101}{209} a^{7} + \frac{103}{209} a^{6} - \frac{7}{19} a^{5} - \frac{58}{209} a^{4} + \frac{36}{209} a^{3} + \frac{35}{209} a^{2} - \frac{30}{209} a + \frac{5}{19}$, $\frac{1}{209} a^{12} + \frac{7}{209} a^{9} + \frac{48}{209} a^{8} - \frac{45}{209} a^{7} + \frac{42}{209} a^{6} + \frac{4}{19} a^{5} + \frac{18}{209} a^{4} + \frac{4}{209} a^{3} - \frac{2}{209} a^{2} - \frac{101}{209} a - \frac{2}{19}$, $\frac{1}{209} a^{13} - \frac{2}{209} a^{9} + \frac{101}{209} a^{8} + \frac{93}{209} a^{7} + \frac{65}{209} a^{6} + \frac{5}{19} a^{5} + \frac{31}{209} a^{4} - \frac{98}{209} a^{3} + \frac{104}{209} a^{2} + \frac{98}{209} a + \frac{3}{19}$, $\frac{1}{209} a^{14} + \frac{4}{209} a^{9} + \frac{73}{209} a^{8} + \frac{45}{209} a^{7} + \frac{68}{209} a^{6} - \frac{9}{19} a^{5} - \frac{8}{209} a^{4} - \frac{26}{209} a^{3} + \frac{34}{209} a^{2} - \frac{42}{209} a - \frac{9}{19}$, $\frac{1}{2299} a^{15} - \frac{1}{2299} a^{14} - \frac{2}{2299} a^{13} - \frac{1}{2299} a^{12} + \frac{3}{2299} a^{11} - \frac{2}{2299} a^{10} + \frac{96}{2299} a^{9} + \frac{197}{2299} a^{8} + \frac{435}{2299} a^{7} - \frac{943}{2299} a^{6} - \frac{740}{2299} a^{5} + \frac{9}{2299} a^{4} + \frac{408}{2299} a^{3} - \frac{1049}{2299} a^{2} - \frac{5}{209} a + \frac{6}{19}$, $\frac{1}{4598} a^{16} - \frac{1}{4598} a^{15} + \frac{9}{4598} a^{14} - \frac{1}{4598} a^{13} - \frac{4}{2299} a^{12} + \frac{9}{4598} a^{11} - \frac{3}{4598} a^{10} + \frac{71}{2299} a^{9} - \frac{96}{2299} a^{8} + \frac{29}{2299} a^{7} - \frac{348}{2299} a^{6} + \frac{1725}{4598} a^{5} - \frac{918}{2299} a^{4} - \frac{2281}{4598} a^{3} - \frac{45}{418} a^{2} - \frac{26}{209} a - \frac{9}{38}$, $\frac{1}{50578} a^{17} + \frac{5}{50578} a^{16} + \frac{3}{50578} a^{15} + \frac{97}{50578} a^{14} + \frac{37}{25289} a^{13} - \frac{105}{50578} a^{12} + \frac{117}{50578} a^{11} + \frac{7}{25289} a^{10} - \frac{4}{121} a^{9} - \frac{9776}{25289} a^{8} - \frac{4772}{25289} a^{7} + \frac{16051}{50578} a^{6} + \frac{998}{2299} a^{5} - \frac{21723}{50578} a^{4} + \frac{481}{2662} a^{3} + \frac{62}{2299} a^{2} - \frac{159}{418} a + \frac{7}{19}$, $\frac{1}{6411485532687507849804036682681311640660025987491193530762} a^{18} + \frac{2720688410621593436529523164645634406444053783265577}{6411485532687507849804036682681311640660025987491193530762} a^{17} - \frac{163155530841344519914963791532697123652051338230437114}{3205742766343753924902018341340655820330012993745596765381} a^{16} + \frac{386300080262664594862912242380332043142771850766900055}{3205742766343753924902018341340655820330012993745596765381} a^{15} + \frac{14522949632081196305970277803566232559077713436762541125}{6411485532687507849804036682681311640660025987491193530762} a^{14} + \frac{1719680023844102229107012964476020931312369109561907719}{3205742766343753924902018341340655820330012993745596765381} a^{13} - \frac{3419136521217834221737540313552995975731802622719994663}{6411485532687507849804036682681311640660025987491193530762} a^{12} + \frac{10087777528264943287662250188838053363554287125288636261}{6411485532687507849804036682681311640660025987491193530762} a^{11} + \frac{574763612697205629037298441348309395716013230560260513}{582862321153409804527639698425573785514547817044653957342} a^{10} - \frac{88565310376719041245973830523807601911006862653550820036}{3205742766343753924902018341340655820330012993745596765381} a^{9} + \frac{288434574013944548017979900515788765793473184123999859522}{3205742766343753924902018341340655820330012993745596765381} a^{8} + \frac{3003157875852955544199965077870715843115474248636005028191}{6411485532687507849804036682681311640660025987491193530762} a^{7} + \frac{78574067149185909594475646374060028169932682743247375937}{291431160576704902263819849212786892757273908522326978671} a^{6} - \frac{840013100981692479244863450636250581563022779522190989163}{3205742766343753924902018341340655820330012993745596765381} a^{5} + \frac{2814756015444140692585034726455477811493571196010204790011}{6411485532687507849804036682681311640660025987491193530762} a^{4} - \frac{11143682001563876403473980780623287695561141998612820837}{30676964271232094975138931496082830816555148265508103018} a^{3} + \frac{1263154410321195362488305993753092085118586422719409295}{26493741870609536569438168110253353887024900774756998061} a^{2} + \frac{1117814242737962736508613373802746787615054454796301921}{2408521988237230597221651646386668535184081888614272551} a + \frac{171596212421631634488844370275189304852165058440887843}{437913088770405563131209390252121551851651252475322282}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 413873076897000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{19}:C_3$ (as 19T4):
| A solvable group of order 114 |
| The 9 conjugacy class representatives for $C_{19}:C_{6}$ |
| Character table for $C_{19}:C_{6}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $19$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{19}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||