Normalized defining polynomial
\(x^{19} - 5 x^{18} + 11 x^{17} - 10 x^{16} + 3 x^{15} + 3 x^{14} - 80 x^{13} + 481 x^{12} - 1180 x^{11} + 1220 x^{10} + 888 x^{9} - 5070 x^{8} + 8854 x^{7} - 9440 x^{6} + 6893 x^{5} - 3748 x^{4} + 2592 x^{3} - 2790 x^{2} + 2673 x - 1053\)
Invariants
Degree: | $19$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-101575284882268140616515967431\)\(\medspace = -\,3^{9}\cdot 557^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.63$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 557$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{8} + \frac{1}{3} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{9} a^{9} + \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{9} + \frac{1}{9} a^{7} + \frac{2}{27} a^{5} + \frac{1}{3} a^{4} + \frac{4}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{10} + \frac{2}{27} a^{6} - \frac{5}{27} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{11} + \frac{1}{27} a^{10} - \frac{2}{81} a^{9} - \frac{1}{27} a^{8} + \frac{8}{81} a^{7} - \frac{1}{9} a^{6} - \frac{1}{81} a^{5} - \frac{4}{27} a^{4} + \frac{11}{81} a^{3} + \frac{7}{27} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{12} - \frac{2}{81} a^{10} - \frac{1}{81} a^{8} + \frac{1}{9} a^{7} - \frac{1}{81} a^{6} + \frac{1}{9} a^{5} + \frac{38}{81} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{243} a^{15} + \frac{1}{243} a^{14} + \frac{1}{243} a^{13} + \frac{1}{243} a^{12} - \frac{2}{243} a^{11} - \frac{2}{243} a^{10} - \frac{10}{243} a^{9} + \frac{8}{243} a^{8} + \frac{35}{243} a^{7} + \frac{35}{243} a^{6} - \frac{34}{243} a^{5} - \frac{61}{243} a^{4} - \frac{8}{27} a^{3} + \frac{11}{27} a^{2} - \frac{1}{3}$, $\frac{1}{3159} a^{16} - \frac{2}{3159} a^{15} + \frac{16}{3159} a^{14} + \frac{10}{3159} a^{13} + \frac{1}{243} a^{12} + \frac{43}{3159} a^{11} + \frac{158}{3159} a^{10} - \frac{67}{3159} a^{9} - \frac{70}{3159} a^{8} - \frac{298}{3159} a^{7} + \frac{302}{3159} a^{6} + \frac{245}{3159} a^{5} + \frac{406}{1053} a^{4} + \frac{203}{1053} a^{3} + \frac{25}{351} a^{2} + \frac{10}{117} a - \frac{1}{3}$, $\frac{1}{161109} a^{17} + \frac{16}{161109} a^{16} - \frac{37}{53703} a^{15} - \frac{61}{53703} a^{14} - \frac{161}{53703} a^{13} - \frac{653}{53703} a^{12} - \frac{290}{161109} a^{11} - \frac{122}{161109} a^{10} + \frac{424}{53703} a^{9} + \frac{2878}{53703} a^{8} - \frac{331}{53703} a^{7} + \frac{34}{243} a^{6} - \frac{9530}{161109} a^{5} + \frac{70828}{161109} a^{4} + \frac{4753}{17901} a^{3} + \frac{3028}{17901} a^{2} - \frac{11}{117} a + \frac{52}{153}$, $\frac{1}{1302244047} a^{18} + \frac{428}{144693783} a^{17} - \frac{80209}{1302244047} a^{16} + \frac{793007}{434081349} a^{15} + \frac{1936471}{434081349} a^{14} - \frac{63280}{33390873} a^{13} + \frac{313963}{100172619} a^{12} - \frac{7269046}{434081349} a^{11} - \frac{67681507}{1302244047} a^{10} - \frac{23466806}{434081349} a^{9} + \frac{18566036}{434081349} a^{8} + \frac{1014310}{33390873} a^{7} - \frac{24995450}{1302244047} a^{6} - \frac{59695478}{434081349} a^{5} + \frac{630458807}{1302244047} a^{4} + \frac{2484602}{5359029} a^{3} - \frac{51382954}{144693783} a^{2} - \frac{6634339}{16077087} a + \frac{520313}{1236699}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 191261859.157 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 38 |
The 11 conjugacy class representatives for $D_{19}$ |
Character table for $D_{19}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19$ | R | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $19$ | $19$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $19$ | $19$ | $19$ | $19$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
557 | Data not computed |