Normalized defining polynomial
\( x^{18} + 18 x^{16} - 9 x^{14} - 1560 x^{12} - 7137 x^{10} + 954 x^{8} + 30393 x^{6} - 14580 x^{4} - 7056 x^{2} + 112 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-953058635371368767189080620859392=-\,2^{16}\cdot 3^{36}\cdot 7^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{1}{24} a^{8} - \frac{1}{8} a^{7} + \frac{1}{24} a^{6} + \frac{1}{8} a^{5} - \frac{11}{24} a^{4} + \frac{1}{8} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{24} a^{11} + \frac{1}{12} a^{9} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} - \frac{7}{24} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{168} a^{12} - \frac{1}{168} a^{10} - \frac{1}{8} a^{9} - \frac{17}{168} a^{8} - \frac{1}{8} a^{7} + \frac{1}{24} a^{6} + \frac{1}{8} a^{5} - \frac{19}{42} a^{4} - \frac{3}{8} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2}$, $\frac{1}{168} a^{13} - \frac{1}{168} a^{11} + \frac{1}{42} a^{9} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{13}{168} a^{5} + \frac{1}{24} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{336} a^{14} - \frac{1}{336} a^{13} - \frac{1}{56} a^{11} - \frac{1}{84} a^{10} - \frac{3}{56} a^{9} + \frac{3}{56} a^{8} + \frac{1}{12} a^{7} + \frac{71}{336} a^{6} - \frac{19}{112} a^{5} - \frac{59}{168} a^{4} - \frac{1}{8} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{336} a^{15} - \frac{1}{336} a^{13} + \frac{1}{84} a^{11} - \frac{1}{24} a^{9} - \frac{55}{336} a^{7} + \frac{1}{48} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{908374828368} a^{16} - \frac{567038869}{454187414184} a^{14} - \frac{1}{336} a^{13} - \frac{316005961}{113546853546} a^{12} - \frac{1}{56} a^{11} + \frac{4677510767}{227093707092} a^{10} + \frac{1}{14} a^{9} - \frac{49823335507}{908374828368} a^{8} - \frac{1}{24} a^{7} - \frac{72318791273}{454187414184} a^{6} + \frac{23}{112} a^{5} - \frac{18700965313}{454187414184} a^{4} + \frac{11058272617}{32441958156} a^{2} - \frac{1}{3} a + \frac{555653638}{8110489539}$, $\frac{1}{908374828368} a^{17} - \frac{567038869}{454187414184} a^{15} + \frac{175448825}{908374828368} a^{13} - \frac{243160753}{75697902364} a^{11} - \frac{76858300637}{908374828368} a^{9} + \frac{41228062273}{454187414184} a^{7} - \frac{1}{4} a^{6} + \frac{27485038997}{129767832624} a^{5} - \frac{1}{2} a^{4} + \frac{81428855}{10813986052} a^{3} - \frac{1}{4} a^{2} + \frac{1271601263}{5406993026} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16230496415.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |