Normalized defining polynomial
\( x^{18} - 6 x^{16} - 8 x^{15} - 3 x^{14} + 120 x^{13} - 234 x^{12} - 312 x^{11} + 2817 x^{10} - 2172 x^{9} - 8964 x^{8} + 9792 x^{7} + 7753 x^{6} + 1404 x^{5} + 1044 x^{4} - 39608 x^{3} + 12072 x^{2} + 25200 x - 11600 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-778072968681250317161459613696=-\,2^{30}\cdot 3^{24}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{10} + \frac{3}{16} a^{8} - \frac{5}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{13152939661660712381232074158160} a^{17} - \frac{66269714732028422431830648159}{2630587932332142476246414831632} a^{16} - \frac{195828621011825391439926531161}{13152939661660712381232074158160} a^{15} - \frac{55558638243335709484294582871}{1011764589358516337017851858320} a^{14} - \frac{702991872791993091394973742449}{6576469830830356190616037079080} a^{13} + \frac{965451093900245592685858535}{50588229467925816850892592916} a^{12} - \frac{37020598018853690009070862769}{505882294679258168508925929160} a^{11} - \frac{98722982597532449179496094967}{505882294679258168508925929160} a^{10} - \frac{1173171730103138638386803837773}{13152939661660712381232074158160} a^{9} - \frac{1982720542866099390765282612577}{13152939661660712381232074158160} a^{8} + \frac{3356899423824354123331620265171}{13152939661660712381232074158160} a^{7} + \frac{4833353880059827733146947243317}{13152939661660712381232074158160} a^{6} + \frac{785768949007292478301111684969}{6576469830830356190616037079080} a^{5} + \frac{501712736980618194797362529451}{3288234915415178095308018539540} a^{4} - \frac{390800855401778702895699859}{797921600440470297332690740} a^{3} - \frac{771899067806601481718468151471}{1644117457707589047654009269770} a^{2} - \frac{80007215570963199798137600773}{822058728853794523827004634885} a - \frac{12930020883148430596066295944}{164411745770758904765400926977}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1489439453.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.2 | $x^{6} + 2 x^{3} + 2 x^{2} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |