Properties

Label 18.8.75613185918...8064.3
Degree $18$
Signature $[8, 5]$
Discriminant $-\,2^{18}\cdot 19^{16}$
Root discriminant $27.40$
Ramified primes $2, 19$
Class number $1$
Class group Trivial
Galois group 18T460

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -13, 0, -41, 0, 65, 0, 160, 0, 37, 0, -49, 0, -14, 0, 4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 4*x^16 - 14*x^14 - 49*x^12 + 37*x^10 + 160*x^8 + 65*x^6 - 41*x^4 - 13*x^2 + 1)
 
gp: K = bnfinit(x^18 + 4*x^16 - 14*x^14 - 49*x^12 + 37*x^10 + 160*x^8 + 65*x^6 - 41*x^4 - 13*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{18} + 4 x^{16} - 14 x^{14} - 49 x^{12} + 37 x^{10} + 160 x^{8} + 65 x^{6} - 41 x^{4} - 13 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-75613185918270483380568064=-\,2^{18}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{4}{37} a^{12} + \frac{14}{37} a^{10} - \frac{11}{37} a^{8} - \frac{15}{37} a^{6} + \frac{15}{37} a^{2} - \frac{4}{37}$, $\frac{1}{37} a^{15} + \frac{4}{37} a^{13} + \frac{14}{37} a^{11} - \frac{11}{37} a^{9} - \frac{15}{37} a^{7} + \frac{15}{37} a^{3} - \frac{4}{37} a$, $\frac{1}{8473} a^{16} + \frac{79}{8473} a^{14} + \frac{3163}{8473} a^{12} - \frac{2587}{8473} a^{10} - \frac{3689}{8473} a^{8} - \frac{570}{8473} a^{6} - \frac{1465}{8473} a^{4} + \frac{233}{8473} a^{2} + \frac{1661}{8473}$, $\frac{1}{8473} a^{17} + \frac{79}{8473} a^{15} + \frac{3163}{8473} a^{13} - \frac{2587}{8473} a^{11} - \frac{3689}{8473} a^{9} - \frac{570}{8473} a^{7} - \frac{1465}{8473} a^{5} + \frac{233}{8473} a^{3} + \frac{1661}{8473} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1102050.1442 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T460:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 80 conjugacy class representatives for t18n460 are not computed
Character table for t18n460 is not computed

Intermediate fields

3.3.361.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed